0434398 NOZZLE WELL EVINRUDE
B25JREUR, BE20SREUM, BE30BAEUD, E20CREDA, E20CREIE, E20CREND, E20CREOR, E20CRERC, E20CRETS, E20EEIE, E20EEND, E20EEOR, E20EERC, E20EETS, E25EEID, E25EENS, E25EEOA, E25EERR, E25EETC, E25REDA, E25REIE, E25REND, E25REOR, E25RERC, E25RETS, E30EEIC, E30EE
NOZZLE
Price: query
Rating:
Compatible models:
B25JREUR
BE20SREUM
BE30BAEUD
E20CREDA
E20CREIE
E20CREND
E20CREOR
E20CRERC
E20CRETS
E20EEIE
E20EEND
E20EEOR
E20EERC
E20EETS
E25EEID
E25EENS
E25EEOA
E25EERR
E25EETC
E25REDA
E25REIE
E25REND
E25REOR
E25RERC
E25RETS
E30EEIC
E30EENR
E30EEOB
E30EERM
E30EETA
E30REDE
E30REIC
E30RENR
E30REOB
E30RERM
E30RETA
E35REIC
E35RENR
E35RERM
E35RETA
SE35REDE
EVINRUDE
BRP EVINRUDE entire parts catalog list:
- CARBURETOR - 20CR » 0434398
BE30BAEUD, BE30BALEUD, E30REUD, E30RLEUD 1997
E20CREDA, E20CRLEDA, HE20CREDA, HE20CRLEDA 1996
E20CREIE, E20CRLEIE, TE20CRLEIE 1991
E20CREND, E20CRLEND, TE20CREND, TE20CRLEND 1992
E20CREOR, E20CRLEOR 1995
E20CRERC, E20CRLERC 1994
E20CRETS, E20CRLETS, TE20CRETS, TE20CRLETS 1993
E20EEIE, E20ELEIE 1991
E20EEND, E20ELEND 1992
E20EEOR, E20ELEOR 1995
E20EERC, E20ELERC 1994
E20EETS, E20ELETS 1993
E25EEID, E25ELEID, TE25ELEID, VE25ELEID 1991
E25EENS, E25ELENS, TE25ELENS, VE25ELENS 1992
E25EEOA, E25ELEOA 1995
E25EERR, E25ELERR 1994
E25EETC, E25ELETC, TE25ELETC, VE25ELETC 1993
E25REDA, E25RLEDA, HE25REDA, HE25RLEDA 1996
E25REIE, E25RLEIE, VE25REIE 1991
E25REND, E25RLEND 1992
E25REOR, E25RLEOR 1995
E25RERC, E25RLERC 1994
E25RETS, E25RLETS 1993
E30EEIC, E30ELEIC, VE30EEIC, VE30ELEIC 1991
E30EENR, E30ELENR, VE30EENR, VE30ELENR 1992
E30EEOB, E30ELEOB 1995
E30EERM, E30ELERM 1994
E30EETA, E30ELETA, VE30EETA, VE30ELETA 1993
E30REDE, E30RLEDE, HE30REDE, HE30RLEDE 1996
E30REIC, E30RLEIC 1991
E30RENR, E30RLENR 1992
E30REOB, E30RLEOB 1995
E30RERM, E30RLERM 1994
E30RETA, E30RLETA 1993
E35REIC, E35RLEIC 1991
E35RENR, E35RLENR 1992
E35RERM, E35RLERM 1994
E35RETA, E35RLETA 1993
SE35REDE, SE35RLEDE 1996
Information:
ORRule of Thumb for tank size with 25% reserve
0.056 × Ave. BHP demand × Hours between refills × 1.25 = _____ gal.0.27 × Ave. BKW demand × Hours between refills × 1.25 = _____ liters Additional tank capacity required for cooling of recirculated fuel in unit injected engines. Tank should be located below level of injectors or nozzles.Piping
Fuel Supply Line Maximum Restriction*: 3600 ... -38.8 kPa (11.6 in Hg)(Vacuum)3400, 3500 ... -30 kPa (9 in. Hg) (Vacuum)3300 ... -20 kPa (6 in. Hg) (Vacuum)3208 ... -27 kPa (8 in. Hg) (Vacuum)Fuel Return Line Maximum Restriction:* 3600 ... 350 kPa (51 psi)3300 ... 20 kPa (3 psi)3208, 3400, 3500 ... 27 kPa (4 psi)*Locate day tank and design piping to meet these requirements.Fuel Properties
Blended (Heavy) fuels are usually described by their viscosity, expressed either in "centistokes" (cSt) or "Seconds Redwood". The Redwood scale at 100°F is being phased out and replaced by the centistokes scale at 50°C. The centistoke viscosity may be preceded by the letters IF for "intermediate fuel" or IBF for "intermediate bunker fuel". For example, IF 180 fuel has a viscosity of 180 cSt at 50°C. The following table gives the approximate relationship between the two scales. Fuel Properties
Density and Specific Gravity
Fuel API Correction Chart - API Gravity Corrected to 60°F
Tooling: Fuel Thermo-hydrometer 1P7408Test Breaker 1P7438Distillate Fuel Temperature
Maximum Fuel Supply Temperature:- Without Power Reduction: 85°F (29°C)Power is reduced 1% for each 10°F (5.6°C) above 100°F (38°C) if engine is running against fuel stop.- Without Injector Damage: 150°F (65°C)Performance Analysis Rules of Thumb
Correction Factors: Power Calculation:
BSFC Tolerances
Performance curves represent typical values obtained under normal operating conditions. Ambient air conditions and fuel used will affect these values. Each of the values may vary in accordance with the following tolerances:Exhaust Stack Temperature 42 DEG C 75 DEG FIntake Manifold Pressure-Gage 10 kPa 3 in HgPower 3 PercentFuel Consumption 6 g/kW-hr .010 lb/hp-hrFuel Rate 5 PercentConditions
Ratings are based on SAE J1349 standard conditions of 100 kPa (29.61 in Hg) and 25°C (77°F). These ratings also apply at ISO 3046/1, DIN 6271 and BS 5514 standard conditions of 100 kPa (29.61 in Hg), 27°C (81°F) and 60% relative humidity.Fuel Rates are based on fuel oil of 35° API [16°C (60°F)] gravity having an LHV of 42 780 kJ/kg (18,390 Btu/lb) when used at 29°C (85°F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal).Additional Formulas Used to Develop Marine Par Curves
For Torque Check GPH proceed as follows:Torque Check GPH = TQ COR. Fuel Rate (G/MIN) ÷ 454 × 60 = LBS/HRLBS/HR ÷ 7.076 = GPHFor BSFC proceed as follows:BSFC = Adjusted CSFC (G/kW HR) ÷ 454 = LBS/kW HRLBS/kW HR ÷ 1.34 = BSFC (LBS/HP HR)Recommended "Guide Line" Gas Supply Pressures for Caterpillar Gas Engines - All Values in PSIG (kPag) Natural Gas
Gas Regulator Capacity Chart
Fuel Gas Methane Numbers
Physical Constants of Gases:
Air-Fuel Ratio Adjustment for Initial Start-up:
Fuel Consumption Calculation
Published fuel consumption values are for 905 BTU/FT3 LHV. To calculate fuel consumption for other fuel gas, the following equation can be used: Special Lube Oil Information for Gas Engines:
Condemning limits
Alternate Oil Analysis (additional test procedures for more data) -1Differential infrared analysis of used oil must not exceed the following absorbance/CM:
Scheduled Oil Sampling If analysis of the used oil at the recommended oil change interval exceeds the condemning limits, the following courses of action can be taken:1. Modify the jacket water temperature and/or adjust the air-to-fuel to minimize the oil degradation rate.2. Shorten the oil change interval.3. Work with your oil supplier to arrive at an oil that will not exceed the limits.Maximum PPM (Parts Per Million) of Wear Metals Detected at 750 Hours to Achieve Projected Overhaul Interval
Oil Failure
Causes and Avoidance
Symptoms of oil failure are stuck piston rings, heavy piston deposits, sludged oil, plugged oil filters, rapid ring and liner wear, and high copper concentrations in oil analysis.It is important that oil analysis measure oxidation and nitration since they result in corrosive wear and accelerate oil degradation. Oxidation and nitration cause oil to thicken and form lacquer and maroon-colored deposits.The nitration rate of an oil is associated with the air-to-fuel ratio for the engine. There is evidence that suggests operating the engine with an air-to-fuel ratio between 10:1 and 11:1 promotes rapid nitration of the oil. This is the normal air-to-fuel ratio range for most Caterpillar Natural Gas Engines and permits the optimum fuel consumption at rated power. In this range, nitrous oxide (NOx) as measured in the exhaust stream is at its highest level. This range may cause the oil to degrade at an unacceptable rate.If nitration is determined to be the principal reason for oil degradation, it may be necessary to adjust the air-to-fuel ratio either higher or lower to minimize the nitration rate.If the air-to-fuel ratio is changed, it must be done with care because it may have a negative effect on the power of the engine or result in excessive exhaust temperature which could affect the service life of the engine.Engine Data
0.056 × Ave. BHP demand × Hours between refills × 1.25 = _____ gal.0.27 × Ave. BKW demand × Hours between refills × 1.25 = _____ liters Additional tank capacity required for cooling of recirculated fuel in unit injected engines. Tank should be located below level of injectors or nozzles.Piping
Fuel Supply Line Maximum Restriction*: 3600 ... -38.8 kPa (11.6 in Hg)(Vacuum)3400, 3500 ... -30 kPa (9 in. Hg) (Vacuum)3300 ... -20 kPa (6 in. Hg) (Vacuum)3208 ... -27 kPa (8 in. Hg) (Vacuum)Fuel Return Line Maximum Restriction:* 3600 ... 350 kPa (51 psi)3300 ... 20 kPa (3 psi)3208, 3400, 3500 ... 27 kPa (4 psi)*Locate day tank and design piping to meet these requirements.Fuel Properties
Blended (Heavy) fuels are usually described by their viscosity, expressed either in "centistokes" (cSt) or "Seconds Redwood". The Redwood scale at 100°F is being phased out and replaced by the centistokes scale at 50°C. The centistoke viscosity may be preceded by the letters IF for "intermediate fuel" or IBF for "intermediate bunker fuel". For example, IF 180 fuel has a viscosity of 180 cSt at 50°C. The following table gives the approximate relationship between the two scales. Fuel Properties
Density and Specific Gravity
Fuel API Correction Chart - API Gravity Corrected to 60°F
Tooling: Fuel Thermo-hydrometer 1P7408Test Breaker 1P7438Distillate Fuel Temperature
Maximum Fuel Supply Temperature:- Without Power Reduction: 85°F (29°C)Power is reduced 1% for each 10°F (5.6°C) above 100°F (38°C) if engine is running against fuel stop.- Without Injector Damage: 150°F (65°C)Performance Analysis Rules of Thumb
Correction Factors: Power Calculation:
BSFC Tolerances
Performance curves represent typical values obtained under normal operating conditions. Ambient air conditions and fuel used will affect these values. Each of the values may vary in accordance with the following tolerances:Exhaust Stack Temperature 42 DEG C 75 DEG FIntake Manifold Pressure-Gage 10 kPa 3 in HgPower 3 PercentFuel Consumption 6 g/kW-hr .010 lb/hp-hrFuel Rate 5 PercentConditions
Ratings are based on SAE J1349 standard conditions of 100 kPa (29.61 in Hg) and 25°C (77°F). These ratings also apply at ISO 3046/1, DIN 6271 and BS 5514 standard conditions of 100 kPa (29.61 in Hg), 27°C (81°F) and 60% relative humidity.Fuel Rates are based on fuel oil of 35° API [16°C (60°F)] gravity having an LHV of 42 780 kJ/kg (18,390 Btu/lb) when used at 29°C (85°F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal).Additional Formulas Used to Develop Marine Par Curves
For Torque Check GPH proceed as follows:Torque Check GPH = TQ COR. Fuel Rate (G/MIN) ÷ 454 × 60 = LBS/HRLBS/HR ÷ 7.076 = GPHFor BSFC proceed as follows:BSFC = Adjusted CSFC (G/kW HR) ÷ 454 = LBS/kW HRLBS/kW HR ÷ 1.34 = BSFC (LBS/HP HR)Recommended "Guide Line" Gas Supply Pressures for Caterpillar Gas Engines - All Values in PSIG (kPag) Natural Gas
Gas Regulator Capacity Chart
Fuel Gas Methane Numbers
Physical Constants of Gases:
Air-Fuel Ratio Adjustment for Initial Start-up:
Fuel Consumption Calculation
Published fuel consumption values are for 905 BTU/FT3 LHV. To calculate fuel consumption for other fuel gas, the following equation can be used: Special Lube Oil Information for Gas Engines:
Condemning limits
Alternate Oil Analysis (additional test procedures for more data) -1Differential infrared analysis of used oil must not exceed the following absorbance/CM:
Scheduled Oil Sampling If analysis of the used oil at the recommended oil change interval exceeds the condemning limits, the following courses of action can be taken:1. Modify the jacket water temperature and/or adjust the air-to-fuel to minimize the oil degradation rate.2. Shorten the oil change interval.3. Work with your oil supplier to arrive at an oil that will not exceed the limits.Maximum PPM (Parts Per Million) of Wear Metals Detected at 750 Hours to Achieve Projected Overhaul Interval
Oil Failure
Causes and Avoidance
Symptoms of oil failure are stuck piston rings, heavy piston deposits, sludged oil, plugged oil filters, rapid ring and liner wear, and high copper concentrations in oil analysis.It is important that oil analysis measure oxidation and nitration since they result in corrosive wear and accelerate oil degradation. Oxidation and nitration cause oil to thicken and form lacquer and maroon-colored deposits.The nitration rate of an oil is associated with the air-to-fuel ratio for the engine. There is evidence that suggests operating the engine with an air-to-fuel ratio between 10:1 and 11:1 promotes rapid nitration of the oil. This is the normal air-to-fuel ratio range for most Caterpillar Natural Gas Engines and permits the optimum fuel consumption at rated power. In this range, nitrous oxide (NOx) as measured in the exhaust stream is at its highest level. This range may cause the oil to degrade at an unacceptable rate.If nitration is determined to be the principal reason for oil degradation, it may be necessary to adjust the air-to-fuel ratio either higher or lower to minimize the nitration rate.If the air-to-fuel ratio is changed, it must be done with care because it may have a negative effect on the power of the engine or result in excessive exhaust temperature which could affect the service life of the engine.Engine Data