0330338 SLIDE, Starter housing EVINRUDE
BE40EECR, BE40EEDS, BE40EEUC, BE50BEEDS, BE50ESECC, BE50RLEUC, E105WELEEN, E105WELSIF, E105WELSSC, E105WRLEES, E105WRLSIF, E105WRLSSC, E35AELCDE, E35AELCUD, E40AELCCS, E40ECDE, E40ECEC, E40ECOB, E40ECRM, E40ECUD, E40EEIA, E40EENJ, E40EEOD, E40EERE, E
SLIDE
Price: query
Rating:
Compatible models:
BE40EECR
BE40EEDS
BE40EEUC
BE50BEEDS
BE50ESECC
BE50RLEUC
E105WELEEN
E105WELSIF
E105WELSSC
E105WRLEES
E105WRLSIF
E105WRLSSC
E35AELCDE
E35AELCUD
E40AELCCS
E40ECDE
E40ECEC
E40ECOB
E40ECRM
E40ECUD
E40EEIA
E40EENJ
E40EEOD
E40EERE
E40EESR
E40EETB
E40JRECA
E40JREDC
E40JREOS
E40JREUR
E40WREES
E40WRLSIR
E40WRLSSC
E45RCCDS
E45RCCUC
E45RCE
E45RCEIA
E45RCENM
E45RCEOD
E45RCERE
E45RCESR
E45RCETB
E45RCLEDS
E45RCLEUC
E50BECCS
E50BECDE
E50BECEC
E50BECUD
E50BEEIA
E50BEENJ
E50BEEOD
E50BEERE
E50BEESR
E50BEETB
E50TELCEC
E55RSLC
E55RSLG
E55RSLW
E55RWLCDC
E55RWLCOS
E55RWLCRD
E55RWLCUC
E55RWLE
E55RWLEIA
E55RWLENM
E55RWLERE
E55RWLESR
E55RWLETB
E55WREES
E55WRLSIR
E55WRLSSC
E65RSLC
E65RSLM
E65RSLZ2
E65RWLCDR
E65RWLCOC
E65RWLCRS
E65WRLEEO
E65WRLSIR
E65WRLSSC
M55RWLR
R45RCLR
SE105RWLH
SE105RWLP
SE105WELV
SE125RWYJ
SE125RWYN
SE125RWYV
SE40RPB
SE40RPH
SE40RPLT2
SE55RSLM2
SE65RSLD
EVINRUDE
BRP EVINRUDE entire parts catalog list:
- REWIND STARTER » 0330338
BE40EEUC, BE40ELEUC, BE40TLEUC, E40ELEUC, E40REUC, E40RLEUC, E40TEEUC, E40TELEUC, E40TLEUC, E40TTLEUC, HE40REUC, HE40RLEUC 1997
BE50BEEDS, BE50BELEDS, BE50TLEDS, E50JEDS, E50TLEDS, SE50TLEDS 1996
BE50ESECC, BE50RLECR, BE50TLECR, BE50TSLECC, E50ESLECC, E50TLECR, E50TSLECC 1998
BE50RLEUC, BE50TLEUC, BE50TSLEUS, E50ESLEUR, E50JEUC, E50TLEUC, E50TSLEUS 1997
E105WELEEN, E105WELEES, E105WPLEES, E105WPXEES 1999
E105WELSIF, E105WPLSIF, E105WPXSIF 2001
E105WELSSC, E105WPLSSC, E105WPXSSC 2000
E105WRLEES, E105WRYEES 1999
E105WRLSIF, E105WRYSIF 2001
E105WRLSSC, E105WRYSSC 2000
E35AELCDE, E35ARLCDE 1986
E35AELCUD, E35ARLCUD 1987
E40AELCCS, E40ARLCCS, E40ATLCCS, E40ECCS, E40ELCCS, E40RCCS, E40RLCCS, E40TECCS, E40TELCCS, E40TLCCS, E40TTLCCS 1988
E40ECDE, E40ELCDE, E40RCDE, E40RLCDE, E40TECDE, E40TELCDE, E40TLCDE 1986
E40ECEC, E40ELCEC, E40RCEC, E40RLCEC, E40TECEC, E40TELCEC, E40TLCEC, E40TTLCEC, TE40ELCEC 1989
E40ECOB, E40ELCOB, E40RCOB, E40RLCOB, E40TECOB, E40TELCOB 1985
E40ECRM, E40ELCRM, E40RCRM, E40RLCRM, E40TECRM, E40TELCRM 1984
E40ECUD, E40ELCUD, E40RCUD, E40RLCUD, E40TECUD, E40TLCUD 1987
E40EEIA, E40ELEIA, E40REIA, E40RLEIA, E40TEEIA, E40TELEIA, E40TLEIA, E40TTLEIA, TE40ELEIA, VE40EEIA, VE40ELEIA, VE40TELEIA, VE40TLEIA 1991
E40EENJ, E40EENM, E40ELENJ, E40ELENM, E40RENM, E40RLENM, E40TEENJ, E40TEENM, E40TELENJ, E40TELENM, E40TLENJ, E40TLENM, E40TTLENM, TE40ELENJ, TE40ELENM, VE40EENJ, VE40EENM, VE40ELENJ, VE40ELENM, VE40TELENJ, VE40TELENM, VE40TLENJ, VE40TLENM 1992
E40EEOD, E40ELEOD, E40REOD, E40RLEOD, E40TEEOD, E40TELEOD, E40TLEOD, E40TTLEOD 1995
E40EERE, E40ELERE, E40RERE, E40RLERE, E40TEERE, E40TELERE, E40TLERE, E40TTLERE 1994
E40EESR, E40ELESR, E40RESR, E40RLESR, E40TEESR, E40TELESR, E40TLESR, E40TTLESR, TE40ELESR, TE40TELESF, TE40TELESR, VE40EESR, VE40ELESR, VE40TELESR, VE40TLESR 1990
E40EETB, E40ELETB, E40RETB, E40RLETB, E40TEETB, E40TELETB, E40TLETB, E40TLETF, E40TTLETB, E40TTLETF, TE40ELETB, VE40EETB, VE40ELETB, VE40TELETB, VE40TLETB, VE40TLETF 1993
E40JRECA 1998
E40JREDC 1996
E40JREOS 1995
E40JREUR 1997
E40WREES, E40WRLEES, E40WRYEES 1999
E40WRLSIR, E40WRSIR, E40WRYSIR 2001
E40WRLSSC, E40WRSSC, E40WRYSSC 2000
E45RCCDS, E45RCLCDS 1986
E45RCCUC, E45RCLCUC 1987
E45RCE, E45RCLE, E45WMLE 1989
E45RCEIA, E45RCLEIA, E45WMLEIA 1991
E45RCENM, E45RCLENM, E45WMLENM 1992
E45RCEOD, E45RCLEOD 1995
E45RCERE, E45RCLERE 1994
E45RCESR, E45RCLESR, E45WMLESR 1990
E45RCETB, E45RCLETB 1993
E45RCLEDS, HE45RCLEDS, SE45RSLH 1996
E45RCLEUC, HE45RCLEUC, SE45RSLB 1997
E50BECCS, E50BELCCS, E50TELCCS, E50TLCCS 1988
E50BECDE, E50BELCDE, E50TELCDE, E50TLCDE 1986
E50BECEC, E50BELCEC, E50TLCEC, TE50TLCEC, TE50TLESF 1989
E50BECUD, E50BELCUD, E50TELCUD, E50TLCUD 1987
E50BEEIA, E50BELEIA, E50JEIA, E50TELEIA, E50TLEIA, VE50BEEIA, VE50BELEIA, VE50TLEIA 1991
E50BEENJ, E50BEENM, E50BELENJ, E50BELENM, E50JENJ, E50JENM, E50TELENM, E50TLENJ, E50TLENM, VE50BEENJ, VE50BEENM, VE50BELENJ, VE50BELENM, VE50TELENM, VE50TLENJ, VE50TLENM 1992
E50BEEOD, E50BELEOD, E50JEOD, E50TELEOD, E50TLEOD 1995
E50BEERE, E50BELERE, E50JERE, E50TELERE, E50TLERE 1994
E50BEESR, E50BELESR, E50TELESR, E50TLESR, TE50TLESF, TE50TLESR, VE50BEESR, VE50BELESR, VE50TLESR 1990
E50BEETB, E50BELETB, E50JETB, E50TELETB, E50TLETB, E50TLETF, VE50BEETB, VE50BELETB, VE50TLETB, VE50TLETF 1993
E50TELCEC 1989
E55RSLC, HE55RSLC, SE55RSC, SE55RSLC, SE55RSYC 1997
E55RSLG 1995
E55RSLW, HE55RSLW, SE55RSLW, SE55RSW, SE55RSYW 1996
E55RWLCDC 1986
E55RWLCOS 1985
E55RWLCRD 1984
E55RWLCUC 1987
E55RWLE 1989
E55RWLEIA 1991
E55RWLENM 1992
E55RWLERE 1994
E55RWLESR 1990
E55RWLETB 1993
E55WREES, E55WRLEES, E55WRYEES 1999
E55WRLSIR, E55WRSIR, E55WRYSIR 2001
E55WRLSSC, E55WRSSC, E55WRYSSC 2000
E65RSLC 1995
E65RSLM, SE65RSLM, SE65RSYM 1996
E65RSLZ2, SE65RSLZ2, SE65RSYZ2 1997
E65RWLCDR, E65TELCDR 1986
E65RWLCOC, E65TELCOC 1985
E65RWLCRS, E65TELCRS, E65WTLCRS 1984
E65WRLEEO, E65WRLEES, E65WRYEEO, E65WRYEES 1999
E65WRLSIR, E65WRYSIR 2001
E65WRLSSC, E65WRYSSC 2000
M55RWLR 1988
R45RCLR, R45RCR 1988
SE105RWLH, SE105RWYH 1998
SE105RWLP, SE105RWYP 1997
SE105WELV, SE105WEXV, SE105WRPLV, SE105WRPXV 1998
SE125RWYJ 1997
SE125RWYN 1998
SE125RWYV 1996
SE40RPB, SE40RPLB, SE40RPYB 1997
SE40RPH, SE40RPLH, SE40RPYH 1996
SE40RPLT2, SE40RPT2, SE40RPYT2 1998
SE55RSLM2, SE55RSM2, SE55RSYM2 1998
SE65RSLD, SE65RSYD 1998
Information:
Hints for Cold-Weather Operation
After starting the engine, the engine speed will be governed for up to a maximum of 30 seconds. After this period, the engine should be operated at low loads until a minimum coolant operating temperature of 80° C (176° F) is achieved.
Achieving operating temperature will help prevent the intake valves and exhaust valves from sticking.
The cooling system and the lubrication system for the engine do not lose heat immediately upon shutdown. This means that an engine can be shut down for a period and the retained heat within the engine will allow the engine readily start.
Install the correct specification of engine lubricant before the beginning of cold weather. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended viscosity of oil.
Check all rubber parts (hoses, fan drive belts) weekly.
Check all electrical wiring and connections for any fraying or damaged insulation.
Keep all batteries fully charged and warm by ensuring that the engine is allowed correct operation at normal operating temperature.
Fill the fuel tank at the end of each shift.
Check the air cleaners and the air intake daily. Check the air intake more often when you operate in snow.
Ensure that the glow plugs are in working order. Refer to Troubleshooting, "Glow Plug Starting Aid- Test".
Personal injury or property damage can result from alcohol or starting fluids.Alcohol or starting fluids are highly flammable and toxic and if improperly stored could result in injury or property damage.
Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.
For jump starting with cables in cold weather, refer to the Operation and Maintenance Manual, "Starting with Jump-Start Cables." for instructions.Viscosity of the Engine Lubrication Oil
Correct engine oil viscosity is essential. Oil viscosity affects lubrication properties and the wear protection that the oil provides for the engine. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended viscosity of oil.At temperatures below −10° C (14° F) damage to engine components can occur if the engine is allowed to operate at high load and speed immediately after starting.Recommendations for the Coolant
Provide cooling system protection for the lowest expected outside temperature. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended coolant mixture.In cold weather, check the coolant often for the correct glycol concentration to ensure adequate freeze protection.Engine Block Heaters
Engine block heaters (if equipped) heat the engine jacket water that surrounds the combustion chambers. This heat provides the following functions:
Starting ability is improved.
Warm up time is reduced.An electric block heater can be activated once the engine is stopped. A block heater can be 110 V DC or 240 V DC. The output can be 600/1000W. Consult your Caterpillar dealer for more information.Idling the Engine
After starting the engine, the engine speed will be governed for a maximum period of 30 seconds. When idling after the engine is started in cold weather, increase the engine rpm from 1000 rpm to 1200 rpm. This idling will warm up the engine more quickly. Maintaining an elevated low idle speed for extended periods will be easier with the installation of a hand throttle. The engine should not be “raced” to speed up the warm up process.Whilst the engine is idling, the application of a light load (parasitic load) will help in achieving the minimum operating temperature. The minimum coolant operating temperature is 80° C (176° F).Recommendations for Coolant Warm Up
Warm up an engine that has cooled below normal operating temperatures due to inactivity. This warm up should be performed before the engine is returned to full operation. During operation in very cold temperature conditions, damage to engine valve mechanisms can result from engine operation for short intervals. This damage can happen if the engine is started and the engine is stopped many times without being operated to warm up completely.When the engine is operated below normal operating temperatures, fuel and oil are not burned completely in the combustion chamber. This fuel and oil causes soft carbon deposits to form on the valve stems. Generally, the deposits do not cause problems and the deposits are burned off during operation at normal engine operating temperatures.When starting and stopping an engine many times without being operated to warm up completely, the carbon deposits become thicker. This starting and stopping can cause the following problems:
Free operation of the valves is prevented.
Valves become stuck.
Pushrods may become bent.
Other damage to valve train components can result.For these reasons, when the engine is started, the engine must be operated until the coolant temperature is 80° C (176° F) minimum. Carbon deposits on the valve stem will be kept at a minimum. The free operation of the valves and the valve components will be maintained.The engine must be warmed thoroughly to keep other engine parts in better condition. The service life of the engine will generally be extended. Lubrication will be improved. There will be less acid and less sludge in the oil. This condition will provide longer service life for the engine bearings, the piston rings, and other parts. However, limit unnecessary idle time to 10 minutes to reduce wear and unnecessary fuel consumption.The Water Temperature Regulator and Insulated Heater Lines
The engine is equipped with a water temperature regulator. When the engine coolant is below the correct operating temperature, jacket water circulates through the engine cylinder block and into the engine cylinder head. The coolant then returns to the cylinder block via an internal passage that bypasses the valve of the coolant temperature regulator. This return ensures that coolant flows around the engine under cold operating conditions. The water temperature regulator begins to open when the engine jacket water has reached the correct minimum operating temperature. As the jacket water coolant temperature rises above the minimum operating temperature, the water temperature regulator opens further allowing more coolant through the radiator to dissipate excess heat.The progressive opening of the water temperature regulator operates the progressive closing of the bypass passage between the cylinder block and head. This action ensures maximum coolant flow
After starting the engine, the engine speed will be governed for up to a maximum of 30 seconds. After this period, the engine should be operated at low loads until a minimum coolant operating temperature of 80° C (176° F) is achieved.
Achieving operating temperature will help prevent the intake valves and exhaust valves from sticking.
The cooling system and the lubrication system for the engine do not lose heat immediately upon shutdown. This means that an engine can be shut down for a period and the retained heat within the engine will allow the engine readily start.
Install the correct specification of engine lubricant before the beginning of cold weather. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended viscosity of oil.
Check all rubber parts (hoses, fan drive belts) weekly.
Check all electrical wiring and connections for any fraying or damaged insulation.
Keep all batteries fully charged and warm by ensuring that the engine is allowed correct operation at normal operating temperature.
Fill the fuel tank at the end of each shift.
Check the air cleaners and the air intake daily. Check the air intake more often when you operate in snow.
Ensure that the glow plugs are in working order. Refer to Troubleshooting, "Glow Plug Starting Aid- Test".
Personal injury or property damage can result from alcohol or starting fluids.Alcohol or starting fluids are highly flammable and toxic and if improperly stored could result in injury or property damage.
Do not use aerosol types of starting aids such as ether. Such use could result in an explosion and personal injury.
For jump starting with cables in cold weather, refer to the Operation and Maintenance Manual, "Starting with Jump-Start Cables." for instructions.Viscosity of the Engine Lubrication Oil
Correct engine oil viscosity is essential. Oil viscosity affects lubrication properties and the wear protection that the oil provides for the engine. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended viscosity of oil.At temperatures below −10° C (14° F) damage to engine components can occur if the engine is allowed to operate at high load and speed immediately after starting.Recommendations for the Coolant
Provide cooling system protection for the lowest expected outside temperature. Refer to this Operation and Maintenance Manual, "Fluid Recommendations" for the recommended coolant mixture.In cold weather, check the coolant often for the correct glycol concentration to ensure adequate freeze protection.Engine Block Heaters
Engine block heaters (if equipped) heat the engine jacket water that surrounds the combustion chambers. This heat provides the following functions:
Starting ability is improved.
Warm up time is reduced.An electric block heater can be activated once the engine is stopped. A block heater can be 110 V DC or 240 V DC. The output can be 600/1000W. Consult your Caterpillar dealer for more information.Idling the Engine
After starting the engine, the engine speed will be governed for a maximum period of 30 seconds. When idling after the engine is started in cold weather, increase the engine rpm from 1000 rpm to 1200 rpm. This idling will warm up the engine more quickly. Maintaining an elevated low idle speed for extended periods will be easier with the installation of a hand throttle. The engine should not be “raced” to speed up the warm up process.Whilst the engine is idling, the application of a light load (parasitic load) will help in achieving the minimum operating temperature. The minimum coolant operating temperature is 80° C (176° F).Recommendations for Coolant Warm Up
Warm up an engine that has cooled below normal operating temperatures due to inactivity. This warm up should be performed before the engine is returned to full operation. During operation in very cold temperature conditions, damage to engine valve mechanisms can result from engine operation for short intervals. This damage can happen if the engine is started and the engine is stopped many times without being operated to warm up completely.When the engine is operated below normal operating temperatures, fuel and oil are not burned completely in the combustion chamber. This fuel and oil causes soft carbon deposits to form on the valve stems. Generally, the deposits do not cause problems and the deposits are burned off during operation at normal engine operating temperatures.When starting and stopping an engine many times without being operated to warm up completely, the carbon deposits become thicker. This starting and stopping can cause the following problems:
Free operation of the valves is prevented.
Valves become stuck.
Pushrods may become bent.
Other damage to valve train components can result.For these reasons, when the engine is started, the engine must be operated until the coolant temperature is 80° C (176° F) minimum. Carbon deposits on the valve stem will be kept at a minimum. The free operation of the valves and the valve components will be maintained.The engine must be warmed thoroughly to keep other engine parts in better condition. The service life of the engine will generally be extended. Lubrication will be improved. There will be less acid and less sludge in the oil. This condition will provide longer service life for the engine bearings, the piston rings, and other parts. However, limit unnecessary idle time to 10 minutes to reduce wear and unnecessary fuel consumption.The Water Temperature Regulator and Insulated Heater Lines
The engine is equipped with a water temperature regulator. When the engine coolant is below the correct operating temperature, jacket water circulates through the engine cylinder block and into the engine cylinder head. The coolant then returns to the cylinder block via an internal passage that bypasses the valve of the coolant temperature regulator. This return ensures that coolant flows around the engine under cold operating conditions. The water temperature regulator begins to open when the engine jacket water has reached the correct minimum operating temperature. As the jacket water coolant temperature rises above the minimum operating temperature, the water temperature regulator opens further allowing more coolant through the radiator to dissipate excess heat.The progressive opening of the water temperature regulator operates the progressive closing of the bypass passage between the cylinder block and head. This action ensures maximum coolant flow
Parts slide EVINRUDE:
0323770
0323770 SLIDE, Neutral lock
100990S, 150940C, 50902C, 70973R, CE275TLCOS, CE300TLCOS, E100MLCSC, E100WMLCOC, E100WMLCRS, E115MLCIH, E115MLCNB, E115MLCOS, E115MLCRD, E115MLCSA, E115MLCTE, E120TLCOS, E140MLCIH, E140MLCNB, E140MLCSA, E140MLCTE, E140TLCOS, E140TLCRD, E150ANCRS, E15
0332428
0332428 SLIDE, Neutral lock
C155WTLM, CE275TLCDC, CE300TLCDC, E100STLCCA, E100STLCEM, E100STLESB, E100WMLCDR, E100WTLCUA, E100WTLESM, E100WTLZ, E10EESC, E110MLCCA, E110MLCDC, E110MLCEM, E110MLCUR, E115MLESB, E120TLCCA, E120TLCDC, E120TLCEM, E120TLCUR, E120TLESB, E125ESXESS, E12