5041343 WASHER EVINRUDE
B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B15R4AAA, B15R4AAB, E10TEL4AAB
WASHER
Price: query
Rating:
Compatible models:
BRP EVINRUDE entire parts catalog list:
- TILLER HANDLE ASSEMBLY » 5041343
B10R4INS, E10R4INS 2012
B10RL4INS, E10RL4INS 2012
B10TEL4AAA, E10TEL4AAA 2012
B10TEL4INS, E10TEL4INS 2012
B10TPL4AAA, B10TPX4AAA, E10TPL4AAA, E10TPX4AAA 2012
B10TPL4AAB, B10TPX4AAB, E10TPL4AAB, E10TPX4AAB 2012
B10TPL4INS, E10TPL4INS 2012
B10TPX4INS, E10TPX4INS 2012
B15R4AAA, B15RL4AAA, E15R4AAA, E15RL4AAA 2012
B15R4AAB, B15RL4AAB, B15TE4AAA, B15TE4AAB, B15TEL4AAA, B15TEL4AAB, E15R4AAB, E15RL4AAB, E15TE4AAA, E15TE4AAB, E15TEL4AAA, E15TEL4AAB 2012
E10TEL4AAB 2012
Information:
Starting Motor
Illustration 1 g01964824
Typical example
12 Volt 4 kW Starting Motor
(1) Terminal 30 for connection of the battery cable
(2) Terminal 50 for connection of ignition switch
(3) Terminal 31 for connection of the ground
Illustration 2 g01964833
Typical example
24 Volt 5.5 kW Starting Motor
(4) Terminal 30 for connection of the battery cable
(5) Integrated Magnetic Switch (IMS)
(6) Terminal 50 for connection of ignition switch
(7) Terminal 31 for connection of the ground
Illustration 3 g01964823
Typical example
24 Volt 8 kW Starting Motor
(8) Terminal 30 for connection of the battery cable
(9) Integrated Magnetic Switch (IMS)
(10) Terminal 50 for connection of ignition switch
(11) Terminal 31 for connection of the ground The starting motor turns the engine via a gear on the engine flywheel. The starting motor speed must be high enough in order to initiate a sustained operation of the fuel ignition in the cylinders.The starting motor consists of the main armature and a solenoid. The solenoid is a relay with two windings Pull-In (PI) and Hold-In (HI). Upon activation of ignition switch, both windings move the iron core by electromagnets. The linkage from the iron core acts to move the pinion toward the flywheel ring gear for engagement. Upon complete engagement, the solenoid completes the high current circuit that supplies electric power to the main armature in order to provide rotation. During cranking of the engine, only the Hold-In (HI) winding is active.The ignition switch is deactivated once the desired engine speed has been achieved. The circuit is disconnected. The armature will stop rotating. Return springs that are located on the shafts and the solenoid will disengage the pinion from flywheel ring gear back to the rest position.The starting motor has an overrunning clutch to prevent damage to the starting motor and mechanical transmissions as the engine speed increases.Certain higher powered starting motors are designed with an Integrated Magnetic Switch (IMS). The Integrated Magnetic Switch (IMS) is activated by the ignition switch. The solenoid circuit then engages the starting motor. The benefit of Integrated Magnetic Switch (IMS) is a lower current in the ignition circuit that will allow the engine ECM to control ignition without the use of a relay.Alternator
The electrical outputs of the alternator have the following characteristics:
Three-phase
Full-wave
RectifiedThe alternator is an electro-mechanical component. The alternator is driven by a belt from the crankshaft pulley. The alternator charges the storage battery during the engine operation.The alternator is cooled by an external fan which is mounted behind the pulley. The fan may be mounted internally. The fan forces air through the holes in the front of the alternator. The air exits through the holes in the back of the alternator.The alternator converts the mechanical energy and the magnetic field into alternating current and voltage. This conversion is done by rotating a direct current electromagnetic field on the inside of a three-phase stator. The electromagnetic field is generated by electrical current flowing through a rotor. The stator generates alternating current and voltage.The alternating current is changed to direct current by a three-phase, full-wave rectifier. Direct current flows to the output terminal of the alternator. The direct current is used for the charging process.A regulator is installed on the rear end of the alternator. Two brushes conduct current through two slip rings. The current then flows to the rotor field. A capacitor protects the rectifier from high voltages.The alternator is connected to the battery through the ignition switch. Therefore, alternator excitation occurs when the switch is in the ON position.
Illustration 1 g01964824
Typical example
12 Volt 4 kW Starting Motor
(1) Terminal 30 for connection of the battery cable
(2) Terminal 50 for connection of ignition switch
(3) Terminal 31 for connection of the ground
Illustration 2 g01964833
Typical example
24 Volt 5.5 kW Starting Motor
(4) Terminal 30 for connection of the battery cable
(5) Integrated Magnetic Switch (IMS)
(6) Terminal 50 for connection of ignition switch
(7) Terminal 31 for connection of the ground
Illustration 3 g01964823
Typical example
24 Volt 8 kW Starting Motor
(8) Terminal 30 for connection of the battery cable
(9) Integrated Magnetic Switch (IMS)
(10) Terminal 50 for connection of ignition switch
(11) Terminal 31 for connection of the ground The starting motor turns the engine via a gear on the engine flywheel. The starting motor speed must be high enough in order to initiate a sustained operation of the fuel ignition in the cylinders.The starting motor consists of the main armature and a solenoid. The solenoid is a relay with two windings Pull-In (PI) and Hold-In (HI). Upon activation of ignition switch, both windings move the iron core by electromagnets. The linkage from the iron core acts to move the pinion toward the flywheel ring gear for engagement. Upon complete engagement, the solenoid completes the high current circuit that supplies electric power to the main armature in order to provide rotation. During cranking of the engine, only the Hold-In (HI) winding is active.The ignition switch is deactivated once the desired engine speed has been achieved. The circuit is disconnected. The armature will stop rotating. Return springs that are located on the shafts and the solenoid will disengage the pinion from flywheel ring gear back to the rest position.The starting motor has an overrunning clutch to prevent damage to the starting motor and mechanical transmissions as the engine speed increases.Certain higher powered starting motors are designed with an Integrated Magnetic Switch (IMS). The Integrated Magnetic Switch (IMS) is activated by the ignition switch. The solenoid circuit then engages the starting motor. The benefit of Integrated Magnetic Switch (IMS) is a lower current in the ignition circuit that will allow the engine ECM to control ignition without the use of a relay.Alternator
The electrical outputs of the alternator have the following characteristics:
Three-phase
Full-wave
RectifiedThe alternator is an electro-mechanical component. The alternator is driven by a belt from the crankshaft pulley. The alternator charges the storage battery during the engine operation.The alternator is cooled by an external fan which is mounted behind the pulley. The fan may be mounted internally. The fan forces air through the holes in the front of the alternator. The air exits through the holes in the back of the alternator.The alternator converts the mechanical energy and the magnetic field into alternating current and voltage. This conversion is done by rotating a direct current electromagnetic field on the inside of a three-phase stator. The electromagnetic field is generated by electrical current flowing through a rotor. The stator generates alternating current and voltage.The alternating current is changed to direct current by a three-phase, full-wave rectifier. Direct current flows to the output terminal of the alternator. The direct current is used for the charging process.A regulator is installed on the rear end of the alternator. Two brushes conduct current through two slip rings. The current then flows to the rotor field. A capacitor protects the rectifier from high voltages.The alternator is connected to the battery through the ignition switch. Therefore, alternator excitation occurs when the switch is in the ON position.
Parts washer EVINRUDE:
0901893
0901893 WASHER,Cable
B10EL4AAA, B10EL4AAB, B10EL4INS, B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B15PL4AAA, B15PL4INS, B15R4AAA, B15R4AAB, B15R4INS, B15RL4IN
5040011
5040011 Washer 8.5-28-1
B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B15PL4AAA, B15PL4INS, B3R4AAA, B4R4AAA, B4R4INS, B6R4AAA, B6R4INS, E10PL4INS, E10TEL4AAB, E15
5040160
5040160 Washer 15.2-19-1.9
B10EL4AAA, B10EL4AAB, B10EL4INS, B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B4R4AAA, B4R4INS, B6R4AAA, B6R4INS, E10EL4AAB, E10EL4INS, E1
5041666
5041666 Washer
B10EL4AAA, B10EL4AAB, B10EL4INS, B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B4R4AAA, B4R4INS, B6R4AAA, B6R4INS, E10EL4AAB, E10EL4INS, E1
5040152
5040152 Washer 4.3-16-1.5
B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B4R4AAA, B4R4INS, B6R4AAA, B6R4INS, E10TEL4AAB
5041203
5041203 WASHER
B10EL4AAA, B10EL4INS, B10PL4AAA, B10PL4INS, B10PX4INS, B10R4AAA, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4INS, B10TPX4INS, B15PL4AAA, B15PL4INS, B15R4AAA, B15R4AAB, B15R4INS, B15RL4INS, B15TE4INS, E10EL4INS, E10PL4INS, E15PL4IN
5041147
5041147 WASHER 6-16-1.5
B10EL4AAA, B10EL4AAB, B10EL4INS, B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B15PL4AAA, B15PL4INS, B15R4AAA, B15R4AAB, B15R4INS, B15RL4IN
5040118
5040118 WASHER
B10EL4AAA, B10EL4AAB, B10EL4INS, B10PL4AAA, B10PL4AAB, B10PL4INS, B10PX4INS, B10R4AAA, B10R4AAB, B10R4INS, B10RL4INS, B10TEL4AAA, B10TEL4INS, B10TPL4AAA, B10TPL4AAB, B10TPL4INS, B10TPX4INS, B15PL4AAA, B15PL4INS, B15R4AAA, B15R4AAB, B15R4INS, B15RL4IN