F17148 Force DECAL, STARBOARD


F17148 DECAL, STARBOARD Force H0456B79K, H0456B80L, H0457H82N, H0507H81A, H0507H82B, H0558H79L, H0559B80M, H0559H80N, H0700H79A, H0709B79A, H0750H79A, H0756H80F, H0756H81G, H0756H82H, H0757B79E, H0758H80B, H0758H82E, H0850H79A, H0850H80A, H0850H81C, H0851H79A, H0856B80H, H0856H82 DECAL
F17148 DECAL, STARBOARD Force
Rating:
53

Buy DECAL, STARBOARD F17148 Force genuine, new aftermarket parts with delivery
Number on catalog scheme: 27
 

Force entire parts catalog list:

H0456B79K 1979
H0456B80L 1980,1981
H0457H82N 1982
H0507H81A 1981
H0507H82B 1982
H0558H79L 1979
H0559B80M 1980
H0559H80N 1980,1981
H0700H79A 1979
H0709B79A 1979
H0750H79A 1979
H0756H80F 1980
H0756H81G 1981
H0756H82H 1982
H0757B79E 1979
H0758H80B 1980
H0758H82E 1982,1983,1984
H0850H79A 1979
H0850H80A 1980
H0850H81C 1981
H0851H79A 1979
H0856B80H 1980
H0856H82K 1982,1983
H0857H79G 1979
H0858B80C 1980
H0858B82E 1982
H0858C84H 1984
H0859B79B 1979
H1000H79A 1979
H1004H79A 1979
H1006B80B 1980
H1006B81C 1981
H1007H79A 1979
H1008H80A 1980
H1058H82G 1982
H1150H79A 1979
H1151H79A 1979
H1154B79A 1979
H1156H80C 1980
H1156H81D 1981
H1157B79B 1979
H1158B82E 1982
H1158H80D 1980
H1159H79C 1979
H1258H81A 1981,1982
H1400H79A 1979
H1401H79A 1979
H1406H80C 1980
H1406H81D 1981
H1407B79B 1979
H1408B80C 1980
H1408H82D 1982
H1409H79B 1979

Information:

Electronic Control Module (ECM)
The ECM is the center of the engine control system. The ECM governs engine speed by controlling the electrical signals to the injector solenoids.Air Inlet Heater Operation
Background
The Air Inlet Heater is used to improve the cold start capability of the engine and to reduce white smoke. The ECM controls the Air Inlet Heater Grid through the Air Inlet Heater Relay.The Air Inlet Heater operation is determined at three different times (Power Up/Preheat, Cranking, and Engine Started Cycle) based on various engine parameters.ECM Power Up and Preheat Cycle
If the Coolant Temperature is less than 49°C (120°F), the ECM will turn the heater ON for 30 seconds as a preheat cycle.The Heater should turn ON, and then OFF when the cycle is complete. If the operator attempts to start the engine before the 30 second preheat cycle ends the ECM begins using the strategy for the Cranking Cycle.Cranking Cycle
When the engine is cranking, the Heater will turn ON if the Coolant Temperature is less than 49°C (120°F), and stay ON while cranking. If the engine fails to start the Heater will activate for 30 seconds (preheat cycle is restarted).Engine Start Cycle
After the engine has started, the Heater operation is determined by the Coolant Temperature.If the coolant temperature is less than 49°C (120°F), the Engine Start Cycle begins. The Engine Start Cycle has two segments, a continuous mode followed by an On/Off cycling mode. The Continuous On mode lasts for a maximum of five minutes. The On/Off cycle mode can last for a maximum of 15 minutes. During the On/Off cycle mode, the Heater is cycled ON and OFF for ten seconds. The Air Inlet Heater will turn OFF anytime the Coolant Temperature exceeds 49°C or 120°F.Figure 17 - Air Inlet Heater Operation Chart Engine Speed/Timing Sensors
The 3126B engine uses two Engine Speed/Timing Sensors, both detecting engine speed and timing reference from a unique pattern on the camshaft gear. The ECM calculates the time between pulses created by the sensor as the camshaft gear rotates to determine engine speed. The ECM stores the pattern of the pulses and compares the signal pattern to the expected pattern to determine crankshaft position. After locating No. 1 cylinder, the ECM triggers each injector in the correct firing order and at the correct time. The actual timing and duration of each injection is based on engine speed and load. A loss of signal from one of the sensors will not cause noticeable engine operation changes. The loss of the signal from both sensors will result in the ECM terminating injection and shutting down the engine, or preventing it from starting.Both sensors are magnetic sensors with and integral connector. They must be serviced as a pair. If one requires replacement, they must both be replaced. The two sensors are not interchangeable, do not switch sensor positions. The Top Camshaft Sensor (Sensor #1) must be connected to the engine harness with the black harness connector and the Bottom Camshaft Sensor (Sensor #2) must be connected to the grey harness connector. If the sensors are replaced, a timing calibration in NOT necessary for the 3126B Marine Engine. Timing calibration is only necessary after replacing an ECM.Repair any Speed/Timing Sensor faults at the earliest possible opportunity to prevent unscheduled engine down time.Boost Pressure Sensor
The Boost Pressure Sensor measures the absolute pressure in the inlet air manifold.The boost pressure is calculated by the ECM to control the fuel to air ratio. The boost pressure is communicated over the data link and on the Electronic Service Tool.The Boost Pressure Sensor measures pressure from 20 to 340 kPa (3 to 49 psi). The sensor is supplied with 5 VDC by the ECM.Injection Actuation Pressure Sensor
The Injection Actuation Pressure Sensor provides an injection actuation pressure signal to the ECM. The ECM modifies the current to the Injection Actuation Pressure Control Valve to control the injection and actuation pressure. Desired injection actuation pressure is based on fuel quantity, injection timing, engine speed, and engine operating mode (cold versus warm mode).The Injection Actuation Pressure Sensor is supplied with 5.0 VDC by the ECM. The sensor returns a voltage signal to the ECM that varies between 0 and 4.8 VDC. The operating range of the sensor is 400 to 31000 kPa (58 to 4496 psi).Injection Actuation Pressure Control Valve
The Injection Actuation Pressure Control Valve regulates the high pressure oil system that drives the hydraulic electronic unit injectors. The Injection Actuation Pressure Sensor indicates the actual injection actuation pressure to the ECM.The ECM sends a pulse width modulated signal to the Injection Actuation Pressure Control Valve. The ECM adjusts this signal to the injection actuation pressure control valve to maintain the desired actuation pressure. The current of the signal varies between 0 and 800 milliamperes.The ECM calculates the desired injection actuation pressure based on the calculated fuel quantity, injection timing, engine speed, and the engine operating mode. The engine operating mode is either the cold mode or the warm mode.The Injection Actuation Pressure Control Valve Signal is Pulse Width Modulated and operates between 0 and 800 milliamperes.Coolant Temperature Sensor
The standard Coolant Temperature Sensor is used to monitor engine coolant temperatures. The engine response to high coolant temperature is determined by a customer programmable parameter on the Service/Monitoring System Screen.Cold Mode
The ECM uses the coolant temperature to determine the cold mode operation. When the engine control system is in cold mode, the following characteristics of engine operation are changed to improve operation of a cold engine:* The timing is advanced.* The actuation pressure for fuel injection is increased.* The fuel quantity is limited.The cold mode operation is activated whenever the coolant temperature is below 18 °C (64 °F). The cold mode remains active until one of the following changes occurs:* The coolant temperature increases above 18 °C (64 °F).* The engine has been running for a period of 12 minutes.


Parts decal Force:

F290398-1
 
F290398-1 DECAL, WIRING (NOT SHOWN)
H0356H75F, H0456B78J, H0456B79K, H0555H74G
F235785
 
F235785 DECAL, COMPLIANCE (CANADA)
H0042B78C, H0042H78D, H0042H79F, H0060H79C, H0070B79A, H0075H79A, H0091B80B, H0091H79A, H0092H79F, H0101B78A, H0102H78E, H0121B79A, H0122H79E, H0125H79E, H0152B78D, H0152H79E, H0202H79K, H0456B79K, H0558H79L, H0559B80M, H0559H78K, H0659B78B, H0700H79
A547392
FA551397
FA554397
 
FA554397 DECAL, ENGINE COVER PORT
H1159H79C, H1409H79B
A 578392
 
A 578392 DECAL, LEG - PORT
H0756H80F, H0856B80H, H1006B80B, H1156H80C, H1406H80C
Back to top