FA286266 Force GEAR, BEVEL PINION


FA286266 GEAR, BEVEL PINION Force H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0094H81F, H0102H76C, H0102H78E, H0122H79E, H0152B78D, H0152B83J, H0152C84K, H0152H79E, H0152H80F, H0152H81G, H0152S89A GEAR
FA286266 GEAR, BEVEL PINION Force
Rating:
93

Buy GEAR, BEVEL PINION FA286266 Force genuine, new aftermarket parts with delivery
Number on catalog scheme: 43
 

Force entire parts catalog list:

H0092B80G 1980
H0092H79F 1979
H0092H81H 1981
H0092H81J 1981,1982
H0092H83K 1983
H0092H84L 1984
H0094H81F 1981,1982
H0102H76C 1976,1977
H0102H78E 1978
H0122H79E 1979
H0152B78D 1978
H0152B83J 1983,1984
H0152C84K 1984
H0152H79E 1979
H0152H80F 1980
H0152H81G 1981
H0152S89A 1989

Information:


Illustration 1 g02469917
Air inlet and exhaust system
(1) Aftercooler core
(2) Air filter
(3) Clean Emissions Module (CEM)
(4) Back pressure valve
(5) Turbocharger
(6) Wastegate actuator
(7) Exhaust cooler (NRS)
(8) Exhaust gas valve (NRS)
(9) Wastegate regulator The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The air inlet and exhaust system consists of the following components:
Air cleaner
Exhaust cooler (NRS)
Exhaust gas valve (NRS)
Turbocharger
Aftercooler
Inlet manifold
Cylinder head, injectors, and glow plugs
Valves and valve system components
Piston and cylinder
Exhaust manifold
Clean Emissions Module (CEM)Air is drawn in through the air cleaner into the air inlet of the turbocharger by the turbocharger compressor wheel. The air is compressed to a pressure of about 150 kPa (22 psi) and heated to about 120° C (248° F) before the air is forced to the aftercooler. As the air flows through the aftercooler the temperature of the compressed air lowers to about 55° C (131° F). Cooling of the inlet air assists the combustion efficiency of the engine. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased power output
Reduced NOx emission
Reduced particulate emissionFrom the aftercooler, the air flows to the exhaust gas valve (NRS). A mixture of air and exhaust gas is then forced into the inlet manifold. Air flow from the inlet manifold to the cylinders is controlled by inlet valves. There are two inlet valves and two exhaust valves for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is forced into the cylinder. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustOn the compression stroke, the piston moves back up the cylinder and the inlet valves close. The cool compressed air is compressed further. This additional compression generates more heat.Note: If the cold starting system is operating, the glow plugs will also heat the air in the cylinder.Just before the piston reaches the top center (TC) position, the ECM operates the electronic unit injector. Fuel is injected into the cylinder. The air/fuel mixture ignites. The ignition of the gases initiates the power stroke. Both the inlet and the exhaust valves are closed and the expanding gases force the piston downward toward the bottom center (BC) position.From the BC position, the piston moves upward. This initiates the exhaust stroke. The exhaust valves open. The exhaust gases are forced through the open exhaust valves into the exhaust manifold.
Illustration 2 g03706055
Typical example
The NOx Reduction System (NRS) operates with the transfer of the hot exhaust gas from the exhaust manifold to the exhaust cooler (7). The hot exhaust gas is cooled in the exhaust cooler. The now cooled exhaust gas passes through the assembly of exhaust gas valve.The reed valves that are located in the exhaust gas valve (NRS) has one main function. The one main function is to prevent the reverse flow of charge air from the inlet side of the engine to the exhaust side of the engine.As the electronically controlled valve (8) starts to open the flow of cooled exhaust gas from the exhaust cooler (7) mixes with the air flow from the charge air aftercooler. The mixing of the cooled exhaust gas and the air flow from the charge air aftercooler reduces the oxygen content of the gas mixture. This results in a lower combustion temperature, so decreases the production of NOx.As the demand for more cooled exhaust gas increases the electronically controlled valve opens further. The further opening of the valve increases the flow of cooled exhaust gas from the exhaust cooler. As the demand for cooled exhaust gas decreases, the electronically controlled valve closes. This decreases the flow of cooled exhaust gas from the exhaust cooler.Exhaust gases from the exhaust manifold enter the inlet of the turbocharger in order to turn the turbocharger turbine wheel. The turbine wheel is connected to a shaft that rotates. The exhaust gases pass from the turbocharger through the following components: exhaust outlet, back pressure valve, Clean Emissions Module and exhaust pipe.Turbocharger
Illustration 3 g00302786
Typical example of a cross section of a turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inlet The turbocharger is mounted on the outlet of the exhaust manifold. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel rotates, the compressor wheel is rotated. The rotation of the compressor wheel causes the intake air to be pressurized through the compressor housing (2) of the turbocharger.
Illustration 4 g03706081
Typical example
(12) Wastegate actuator
(13) Actuating lever
(14) Line (boost pressure)
Illustration 5 g02151895
Typical example
(15) Wastegate regulator When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, air is compressed to a higher pressure and more air is forced into the cylinders. The increased flow of air into the cylinders allows the fuel to be burnt with greater efficiency. This produces more power.A wastegate is installed on the turbine housing of the turbocharger. The wastegate is a valve that allows exhaust gas to bypass the turbine wheel of the turbocharger. The operation of the wastegate is dependent on the pressurized air (boost pressure) from the turbocharger compressor. The boost pressure acts on a diaphragm that is spring loaded in the wastegate actuator which varies the amount of exhaust gas that flows into the turbine.The wastegate regulator (15) is controlled by the engine Electronic Control Module (ECM). The ECM uses inputs from a number of engine sensors to determine the optimum boost pressure. This will achieve the best exhaust emissions and fuel consumption at any given engine operating condition. The ECM


Parts gear Force:

F286614
 
F286614 GEAR SHIFT HANDLE
H0060B76A, H0062H79M, H0082H76G, H0082H79K, H0091B80B, H0091H79A, H0091H83C, H0091H84D, H0092284D, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0092S88A, H0092S91A, H0093S91A, H0094H81F, H0101B78A, H0102H76C, H0102H78E, H0121B79
F487674
 
F487674 GEAR, STARTER PINION
H0060B76A, H0062H79M, H0082H76G, H0082H79K, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0094H81F, H0102H76C, H0102H78E, H0122H79E, H0152B78D, H0152B83J, H0152C84K, H0152H79E, H0152H80F, H0152H81G, H0352H79L, H0353H78K, H0353H80
F286705
 
F286705 GEAR SHIFT ROD LOWER, FOR STANDARD SHAFT MODELS
H0062H79M, H0064H78D, H0082H76G, H0082H79K, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0094H81F, H0102H76C, H0102H78E, H0122H79E, H0152B78D, H0152B83J, H0152C84K, H0152H79E, H0152H80F, H0152H81G
F330705
 
F330705 GEAR SHIFT ROD LOWER, FOR LONG SHAFT MODELS
H0062H79M, H0082H76G, H0082H79K, H0092B80G, H0092H79F, H0102H76C, H0102H78E, H0122H79E, H0152B78D, H0152H79E, H0152H80F
F286615
 
F286615 GEAR SHIFT ROD UPPER
H0091B80B, H0091H79A, H0091H83C, H0091H84D, H009201RS, H009201SD, H0092284D, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0092S88A, H0092S91A, H0093S91A, H0094H81F, H0095B80F, H0095B81G, H0095H82H, H0101B78A, H0102H76C, H0102H78
824916A 1
 
824916A 1 GEAR HOUSING UPPER
H0091H84D, H009201RS, H009201SD, H0092284D, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0092S88A, H0092S91A, H0093S91A, H0094H81F, H0102H76C, H0102H78E, H0122H79E, H015201RS, H015211SS, H0152B78D, H0152B83J, H0152C84K, H0152H79
FA286054
 
FA286054 GEAR HOUSING LOWER W/BEARING, PLUG AND SPRING PIN
H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0094H81F, H0102H76C, H0102H78E, H0122H79E, H0152B78D, H0152B83J, H0152C84K, H0152H79E, H0152H80F, H0152H81G, H0152S89A
FK1065
GEAR HOUSING SEAL KIT
FK1065 GEAR HOUSING SEAL KIT
H0091H84D, H009201RS, H009201SD, H0092284D, H0092B80G, H0092H79F, H0092H81H, H0092H81J, H0092H83K, H0092H84L, H0092S88A, H0092S91A, H0093S91A, H0094H81F, H0122H79E, H015201RS, H015211SS, H0152B83J, H0152C84K, H0152H79E, H0152H80F, H0152H81G, H0152S89
Back to top