F74H20 Force IGNITION SWITCH W/KEY AND MOUNTING NUT (ACCESSORY ITEM)


F74H20 IGNITION SWITCH W/KEY AND MOUNTING NUT (ACCESSORY ITEM) Force H0252H77B, H0254H75A, H0351H76K, H0356H75F, H0456B78J, H0555H74G, H0559H77H, H0559H77J, H0659B78B, H0757H75A, H0757H76C, H0857B78F, H0859H77A, H0859H78A, H1059H76D, H1059H77G, H1159H77A, H1209H76F IGNITION
F74H20 IGNITION SWITCH W/KEY AND MOUNTING NUT (ACCESSORY ITEM) Force
Rating:
33

Buy IGNITION SWITCH W/KEY AND MOUNTING NUT (ACCESSORY ITEM) F74H20 Force genuine, new aftermarket parts with delivery
Number on catalog scheme: 12
 

Force entire parts catalog list:

H0252H77B 1977
H0254H75A 1975,1976
H0351H76K 1976
H0356H75F 1975,1976,1977
H0456B78J 1978
H0555H74G 1974,1976
H0559H77H 1977
H0559H77J 1977
H0659B78B 1978
H0757H75A 1975,1976
H0757H76C 1976
H0857B78F 1978
H0859H77A 1977
H0859H78A 1978
H1059H76D 1976
H1059H77G 1977
H1159H77A 1977
H1209H76F 1976,1977

Information:


Illustration 1 g01424011
Air inlet and exhaust system schematic (1) Inlet to the engine (2) Aftercooler core (3) Inlet air line (4) Exhaust outlet from turbocharger (5) Turbine side of turbocharger (6) Compressor side of turbocharger (7) Air cleanerThe engine components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The components of the air inlet and exhaust system are the following components:
Air cleaner
Turbocharger
Aftercooler
Cylinder head
Valves and valve system components
Piston and cylinder
Exhaust manifoldThe turbocharger compressor wheel pulls inlet air through the air cleaner and into the air inlet. The air is compressed and this causes the air to become hot. The air flows through aftercooler core (2) and the temperature of the compressed air lowers. This helps to provide increased horsepower output. Aftercooler core (2) is a separate cooler core that is mounted in front of the engine radiator. The engine fan causes ambient air to move across both cores. This cools the turbocharged inlet air and the engine coolant.Air is forced from the aftercooler into inlet manifold (1). The air flow from the inlet port into the cylinders is controlled by inlet valves.
Illustration 2 g01424012
Air inlet and exhaust system (2) Aftercooler core (4) Exhaust outlet (5) Turbine side of turbocharger (6) Compressor side of turbocharger (8) Exhaust manifold (9) Exhaust valve (10) Inlet valve (11) Air inletEach cylinder has two inlet valves (10) and two exhaust valves (9) in the cylinder head. The inlet valves open on the inlet stroke. When the inlet valves open, compressed air from the inlet port within the inlet manifold is pushed into the cylinder. The inlet valves close when the piston begins the compression stroke. The air in the cylinder is compressed and the fuel is injected into the cylinder when the piston is near the top of the compression stroke. Combustion begins when the fuel mixes with the air. The force of combustion pushes the piston on the power stroke. The exhaust valves open and the exhaust gases are pushed through the exhaust port into exhaust manifold (8). After the piston finishes the exhaust stroke, the exhaust valves close and the cycle begins again.Exhaust gases from the exhaust manifold flow into the turbine side of turbocharger (5). The high temperature exhaust gases cause the turbocharger turbine wheel to turn. The turbine wheel is connected to the shaft that drives the compressor wheel. Exhaust gases from the turbocharger pass through exhaust outlet (4), through a muffler, and through an exhaust stack.Turbocharger
Illustration 3 g01804374
Turbocharger (12) Air inlet (13) Compressor housing (14) Compressor wheel (15) Bearing (16) Oil inlet port (17) Bearing (18) Turbine housing (19) Turbine wheel (20) Exhaust outlet (21) Oil outlet port (22) Exhaust inletThe turbocharger is mounted to the exhaust manifold of the engine. All of the exhaust gases go from the exhaust manifold through the turbocharger.The exhaust gases enter the turbocharger and the turbine wheel is turned. Because the turbocharger turbine wheel is connected by a shaft to the turbocharger compressor wheel, the turbine wheel and the compressor wheel turn at very high speeds. The rotation of the compressor wheel pulls clean air through the compressor housing air inlet. The action of the compressor wheel blades causes a compression of the inlet air. This compression allows a larger amount of air to enter the engine. With more air in the engine, the engine is able to burn more fuel. The overall effect is an increase in power.
Illustration 4 g01804375
Turbocharger with wastegate (23) Canister (24) Actuating leverThe engine can operate under conditions of low boost. Low boost is a condition that occurs when the turbocharger produces less than optimum boost pressure. There is a spring that is inside canister (23). Under low boost, the spring pushes on the diaphragm in canister (23). This moves actuating lever (24). The actuating lever closes the wastegate, which will allow the turbocharger to operate at maximum performance.Under conditions of high boost, the wastegate opens. The open wastegate allows exhaust gases to bypass the turbine side of the turbocharger. When the boost pressure increases against the diaphragm in canister (23), the wastegate is opened. The rpm of the turbocharger is limited by bypassing a portion of the exhaust gases around the turbine wheel of the turbocharger.Note: The calibration of the wastegate is preset at the factory. No adjustment can be made to the wastegate.Bearing (15) and bearing (17) in the turbocharger use engine oil that is under pressure for lubrication. The lubrication for the bearings flows through oil inlet port (16) and into the inlet port in the center section of the turbocharger cartridge. The oil exits the turbocharger through oil outlet port (21). The oil then returns to the engine oil pan through the oil drain line for the turbocharger.Valves And Valve Mechanism
Illustration 5 g01804414
Valve system components (25) Valve bridge (26) Rocker arm (27) Camshaft (28) Rotocoil (29) Valve spring (30) Valve guide (31) ValveThe valves and the valve mechanism control the flow of inlet air into the cylinders during engine operation. The valves and the valve mechanism control the flow of exhaust gases out of the cylinders during engine operation.
Illustration 6 g01804418
Components of the gear train (32) Timing mark (33) Camshaft gear (34) Adjustable idler gear (35) Idler gear (36) Timing mark (37) Cluster gear (38) Crankshaft gear (39) Oil pump gearThe inlet valves and the exhaust valves are opened by the valve mechanism. The inlet valves and the exhaust valves are also closed by the valve mechanism. This occurs as the rotation of the crankshaft causes the camshaft to rotate. Camshaft gear (33) is driven by a series of two idler gears (34) and (35). Idler gear (34) is driven by cluster gear (37). Cluster gear (37) is driven by crankshaft gear (38). Timing mark (32) and timing mark (36) are aligned in order to provide the correct relationship between the piston and the valve movement.The camshaft has three lobes for each cylinder. One lobe operates the inlet valves. A second lobe operates the exhaust valves.


Parts ignition Force:

F70H07
F70H08
F71H21
 
F71H21 IGNITION SWITCH MOUNTING KIT (ACCESSORY ITEM)
H0252H77B, H0254H75A, H0351H76K, H0356H75F, H0456B78J, H0555H74G, H0559H77H, H0559H77J, H0559H78K, H0659B78B, H0757H75A, H0757H76C, H0857B78F, H0859H77A, H1059H76D, H1059H77G, H1159H77A, H1209H76F
F71H20
 
F71H20 IGNITION SWITCH MOUNTING KIT (ACCESSORY ITEM)
H0555H74G, H0757H75A, H0757H76C, H0859H78A, H1059H76D, H1059H77G, H1209H76F
F74H19
 
F74H19 IGNITION KEY SWITCH
H0252H77B, H0254H75A, H0351H76K, H0356H75F, H0559H77H, H0559H77J, H0559H78K, H0659B78B, H0757H75A, H0757H76C, H0859H78A, H1059H76D, H1059H77G, H1209H76F
FS474475
 
FS474475 IGNITION COIL
H0558H79L, H0559B80M, H0559H77H, H0559H77J, H0559H78K, H0659B78B, H1059H76D
F5H077
 
F5H077 IGNITION KEY SWITCH
H0202B80L, H0202B81M, H0202H79K, H0202H82N, H0252B83G, H0252H78C, H0252H78D, H0257F88A, H0257F88B, H0306B80C, H0307H81D, H0350H78L, H0352F90B, H0352F90C, H0353E91B, H0355D89A, H0356F89B, H0357C86A, H0357C87A, H0357C88B, H0357F88A, H0357F89C, H0357G90
F5H078
 
F5H078 IGNITION KEY SWITCH
H0091H83C, H0091H84D, H0095B81G, H0095H82H, H0202B80L, H0202B81M, H0202H79K, H0202H82N, H0252B83G, H0252H78C, H0252H78D, H0257F88A, H0257F88B, H0306B80C, H0307H81D, H0350H78L, H0352F90B, H0352F90C, H0353E91A, H0353E91B, H0355D89A, H0356F89B, H0357C86
Back to top