30586-881-010 SEE PART DETAILS - PRI; STAY, IGNITION CONTROL MODULE (Honda Code 2027555). Honda
BF8A3 LA, BF8A3 SA, BF8A4 LA, BF8A4 SA, BF8A5 LA, BF8A5 SA, BF8A6 LA, BF8A6 SA, BF8AK0 LA, BF8AK0 SA, BF8AM LA, BF8AM SA, BF8AM XA, BF8AW LA, BF8AW SA, BF8AW XA, BF8AX LA, BF8AX SA, BF8AX XA, BF8AY LA, BF8AY SA, BF8AY XA
SEE
Price: query
Rating:
Compatible models:
Honda entire parts catalog list:
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
- INLET MANIFOLD » 30586-881-010
Information:
Illustration 1 g06484350
Typical example of the air inlet and exhaust system
(1) Aftercooler core
(2) Air filter
(3) Turbocharger
(4) Wastegate actuator
(5) Exhaust gas valve (NRS)
(6) Exhaust cooler (NRS)The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The air inlet and exhaust system consists of the following components:
Air cleaner
Exhaust cooler (NRS)
Exhaust gas valve (NRS)
Turbocharger
Aftercooler
Inlet manifold
Cylinder head, injectors, and glow plugs
Valves and valve system components
Piston and cylinder
Exhaust manifoldAir is drawn in through the air cleaner into the air inlet of the turbocharger by the turbocharger compressor wheel. The air is compressed to a pressure of about 150 kPa (22 psi) and heated to about 120° C (248° F) before the air is forced to the aftercooler. As the air flows through the aftercooler the temperature of the compressed air lowers to about 55° C (131° F). Cooling of the inlet air assists the combustion efficiency of the engine. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased power output
Reduced NOx emission
Reduced particulate emissionFrom the aftercooler, the air flows to the air inlet connection and then to the NOx Reduction System (NRS). A mixture of air and exhaust gas is then forced into the inlet manifold.Air flow from the inlet manifold to the cylinders is controlled by inlet valves. There are two inlet valves and two exhaust valves for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is forced into the cylinder. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustOn the compression stroke, the piston moves back up the cylinder and the inlet valves close. The cool compressed air is compressed further. This additional compression generates more heat.Note: If the cold starting system is operating, the glow plugs will also heat the air in the cylinder.Just before the piston reaches the top center (TC) position, the ECM operates the electronic unit injector. Fuel is injected into the cylinder. The air/fuel mixture ignites. The ignition of the gases initiates the power stroke. Both the inlet and the exhaust valves are closed and the expanding gases force the piston downward toward the bottom center (BC) position.From the BC position, the piston moves upward. This initiates the exhaust stroke. The exhaust valves open. The exhaust gases are forced through the open exhaust valves into the exhaust manifold.
Illustration 2 g06484373
Typical example
The NOx Reduction System (NRS) operates with the transfer of the hot exhaust gas from the exhaust manifold to the exhaust gas valve (NRS) (5).As the electronically controlled valve (5) starts to open the flow of cooled exhaust gas from the exhaust cooler (6) mixes with the air flow from the charge air aftercooler. The mixing of the cooled exhaust gas and the air flow from the charge air aftercooler reduces the oxygen content of the gas mixture. This results in a lower combustion temperature, so decreases the production of NOx.As the demand for more cooled exhaust gas increases the electronically controlled valve opens further. The further opening of the valve increases the flow of cooled exhaust gas from the exhaust cooler. As the demand for cooled exhaust gas decreases, the electronically controlled valve closes. This decreases the flow of cooled exhaust gas from the exhaust cooler.The hot exhaust gas is cooled in the exhaust cooler (6). The cooled exhaust gas passes through the exhaust cooler (6) to the inlet manifold.The electronically controlled exhaust gas valve (5) is controlled by the ECM.In some instances, the engine will need to use the electronically controlled exhaust gas valve (5) to generate the required flow of exhaust gas.Exhaust gases from the exhaust manifold enter the inlet of the turbocharger to turn the turbocharger turbine wheel. The turbine wheel is connected to a shaft that rotates. The exhaust gases pass from the turbocharger through the following components: exhaust outlet, and exhaust pipe.Turbocharger
Illustration 3 g00302786
Typical example of a cross section of a turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inletThe turbocharger is mounted on the outlet of the exhaust manifold. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel rotates, the compressor wheel is rotated. The rotation of the compressor wheel causes the intake air to be pressurized through the compressor housing (2) of the turbocharger.When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, air is compressed to a higher pressure and more air is forced into the cylinders. The increased flow of air into the cylinders allows the fuel to be burnt with greater efficiency. This produces more power.The shaft that connects the turbine to the compressor wheel rotates in bearings (4) and (6). The bearings require oil under pressure for lubrication and cooling. The oil that flows to the lubricating oil inlet port (5) passes through the center of the turbocharger which retains the bearings. The oil exits the turbocharger from the lubricating oil outlet port (10) and returns to the oil pan.Electronic Actuated Turbocharger Wastegate (EWG)
A wastegate is installed on the turbine housing of the turbocharger. The wastegate actuator is installed on the compressor housing of the turbocharger.The wastegate is a valve that allows exhaust gas to bypass the turbine wheel of the turbocharger. The position of the valve varies the amount of exhaust gas that flows into the turbine.The wastegate valve is connected to an actuating lever. The actuating lever is connected to an electronic actuated wastegate actuator.Inside the wastegate actuator is an electric
Parts see Honda:
96100-62030-00
96100-62030-00 SEE PART DETAILS - PRI; BEARING, RADIAL BALL (6203) (Honda Code 0722199).
BF2AM SA, BF2AM SAB, BF2AW LA, BF2AW SA, BF2AW SAB, BF8A3 LA, BF8A3 SA, BF8A4 LA, BF8A4 SA, BF8A5 LA, BF8A5 SA, BF8A6 LA, BF8A6 SA, BF8AK0 LA, BF8AK0 SA, BF8AM LA, BF8AM SA, BF8AM XA, BF8AW LA, BF8AW SA, BF8AW XA, BF8AX LA, BF8AX SA, BF8AX XA, BF8AY
31652-881-014
31652-881-014 SEE PART DETAILS - SUP; PLUG, RECEPTACLE (Honda Code 1308576).
BF15A1 LA, BF15A1 SA, BF15A2 LA, BF15A2 SA, BF15AM LA, BF15AM SA, BF15AW LA, BF15AW SA, BF15AX LA, BF15AX SA, BF15AY LA, BF15AY SA, BF25A1 LHA, BF25A1 SHA, BF25A2 LHA, BF25A2 SHA, BF25A3 LHA, BF25A3 SHA, BF25AW LHA, BF25AW SHA, BF25AX LHA, BF25AX SHA
17661-921-000
17661-921-000 SEE PART DETAILS - SUP; PRIMER BULB (Honda Code 0444083).
BF115A1 LA, BF115A1 LCA, BF115A1 XA, BF115A1 XCA, BF115A2 LA, BF115A2 LCA, BF115A2 XA, BF115A2 XCA, BF115A3 LA, BF115A3 LCA, BF115A3 XA, BF115A3 XCA, BF115A4 LA, BF115A4 LCA, BF115A4 XA, BF115A4 XCA, BF115AX LA, BF115AX LCA, BF115AX XA, BF115AX XCA,
90126-881-000
90126-881-000 SEE PART DETAILS - SUP; BOLT, FLANGE (8X45) (Honda Code 0497990).
BF15A1 LAS, BF15A1 SAS, BF15A1 XAS, BF15A2 LAS, BF15A2 SAS, BF15A2 XAS, BF15AM LAS, BF15AM SAS, BF15AM XAS, BF15AW LAS, BF15AW SAS, BF15AW XAS, BF15AX LAS, BF15AX SAS, BF15AX XAS, BF15AY LAS, BF15AY SAS, BF15AY XAS, BF25AW LHA, BF25AW LHSA, BF25AW LR
58141-881-010
58141-881-010 SEE PART DETAILS - PRI; CAP, PROPELLER (Honda Code 0768309).
BF8A3 LA, BF8A3 SA, BF8A4 LA, BF8A4 SA, BF8A5 LA, BF8A5 SA, BF8A6 LA, BF8A6 SA, BF8AK0 LA, BF8AK0 SA, BF8AM LA, BF8AM SA, BF8AM XA, BF8AW LA, BF8AW SA, BF8AW XA, BF8AX LA, BF8AX SA, BF8AX XA, BF8AY LA, BF8AY SA, BF8AY XA
99101-ZH8-0850
99101-ZH8-0850 SEE PART DETAILS - PRI; JET, MAIN (#85) (Honda Code 5947148).
BF8AW LA, BF8AW SA, BF8AW XA
90016-ZW9-000
90016-ZW9-000 SEE PART DETAILS - PRI; BOLT, FLANGE (6X25) (Honda Code 6643878).
BF115A1 LA, BF115A1 LCA, BF115A1 XA, BF115A1 XCA, BF115A2 LA, BF115A2 LCA, BF115A2 XA, BF115A2 XCA, BF115A3 LA, BF115A3 LCA, BF115A3 XA, BF115A3 XCA, BF115A4 LA, BF115A4 LCA, BF115A4 XA, BF115A4 XCA, BF115A5 LA, BF115A5 LCA, BF115A5 XA, BF115A5 XCA,
90017-ZY3-000
90017-ZY3-000 SEE PART DETAILS - PRI; BOLT, FLANGE (6X16)
BF115A2 LA, BF115A2 LCA, BF115A2 XA, BF115A2 XCA, BF115A3 LA, BF115A3 LCA, BF115A3 XA, BF115A3 XCA, BF115A4 LA, BF115A4 LCA, BF115A4 XA, BF115A4 XCA, BF115A5 LA, BF115A5 LCA, BF115A5 XA, BF115A5 XCA, BF115A6 LA, BF115A6 LCA, BF115A6 XA, BF115A6 XCA,