5034901 CAMSHAFT, INTAKE STBD (200HP) JOHNSON
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS
CAMSHAFT
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
Compatible models:
BRP JOHNSON entire parts catalog list:
- CAMSHAFT » 5034901
BJ225CX4DC 2006
BJ225X4SDC 2006
BJ200CX4O, J200CX4SOC 2004,2005
J200CX4SRS 2004
BJ200X4SO, J200PX4SOC 2004,2005
J200PX4SRS 2004
BJ225CX4O, J225CX4SOC, J225CZ4SOS 2004,2005
J225CX4SRS 2004
BJ225X4SO, J225PX4SOC, J225PZ4SOS 2004,2005
J225PX4SRS 2004
Information:
Engine Speed Governing
The ECM maintains the desired engine speed by controlling the actuator for the throttle. The actuator is located at the inlet to the aftercooler. The actuator is electrically controlled and electrically actuated.The ECM issues a throttle command that represents a percent of the level of electrical current. The output can be viewed on the Caterpillar Electronic Technician (ET).Desired engine speed is determined by the status of the idle/rated switch, the desired speed input (analog voltage or 4 to 20 mA), and parameters such as maximum engine high idle speed that are programmed into the software. Actual engine speed is detected via a signal from the speed/timing sensor. Parameters such as governor gain can be programmed with Cat ET.Air/Fuel Ratio Control
The ECM provides control of the air/fuel mixture for performance and for efficiency at low emission levels. The system consists of an electronic fuel metering valve, output drivers in the ECM, and maps in the ECM. The control compensates for changes in the BTU of the fuel in order to maintain desired emission levels.The following steps describe the basic operation:
The ECM determines the desired flow rates for the air and for the fuel. The flow rates are determined by these factors:
Desired engine speed
Actual engine speed
Calculated engine load
The command for the flow of the fuel is sent to the electronic fuel metering valve via the CAN data link. This process is repeated continuously during engine operation.Start/Stop Sequencing
The ECM contains the logic and the outputs for control of starting and of shutdown. The customer programmable logic responds to signals from the following components: engine control, emergency stop switch, remote start switch, data link and other inputs.When the programmable logic determines that it is necessary to crank the engine, the ECM supplies +Battery voltage to the relay for the starting motor. The ECM removes the voltage when the programmable crank terminate speed is reached or when a programmable cycle crank time has expired.The engine must be equipped with an energize-to-run type of gas shutoff valve (GSOV). The source of the voltage to the GSOV depends on the engine's configuration. The GSOV may be energized by the customer's equipment or by the engine's control system.If the engine's control system controls the GSOV, the ECM supplies +Battery voltage to the GSOV whenever the programmable logic determines that fuel is required to operate the engine.For more information on programmable parameters, refer to Troubleshooting, "Programming Parameters".Engine Monitoring and Protection
The ECM monitors both the engine operation and the electronic system.Problems with engine operation such as low oil pressure produce an event code. The ECM can issue a warning, a derating, or a shutdown. This depends on the severity of the condition. For more information, refer to Troubleshooting, "Troubleshooting With An Event Code".Problems with the electronic system such as an open circuit produce a diagnostic code. For more information, refer to Troubleshooting, "Troubleshooting With A Diagnostic Code".Ignition Control
The ECM provides variable ignition timing that is sensitive to detonation.Each cylinder has an ignition transformer that is located under the valve cover for the cylinder. To initiate combustion, the ECM sends a pulse of approximately 100 volts to the primary coil of an ignition transformer at the appropriate time and for the appropriate duration. The transformer steps up the voltage in order to create a spark across the spark plug electrode.Detonation sensors monitor the engine for excessive detonation. The engine has eight detonation sensors. Each sensor monitors two adjacent cylinders. The sensors generate data on vibration that is processed by the ECM in order to determine detonation levels. If detonation reaches an unacceptable level, the ECM retards the ignition timing of the affected cylinder or cylinders. If retarding the timing does not limit detonation to an acceptable level, the ECM shuts down the engine.The ECM provides extensive diagnostics for the ignition system. The ECM also provides a switch input for ignition timing in order to allow operation with alternate fuels such as propane that require a timing offset.
The ECM maintains the desired engine speed by controlling the actuator for the throttle. The actuator is located at the inlet to the aftercooler. The actuator is electrically controlled and electrically actuated.The ECM issues a throttle command that represents a percent of the level of electrical current. The output can be viewed on the Caterpillar Electronic Technician (ET).Desired engine speed is determined by the status of the idle/rated switch, the desired speed input (analog voltage or 4 to 20 mA), and parameters such as maximum engine high idle speed that are programmed into the software. Actual engine speed is detected via a signal from the speed/timing sensor. Parameters such as governor gain can be programmed with Cat ET.Air/Fuel Ratio Control
The ECM provides control of the air/fuel mixture for performance and for efficiency at low emission levels. The system consists of an electronic fuel metering valve, output drivers in the ECM, and maps in the ECM. The control compensates for changes in the BTU of the fuel in order to maintain desired emission levels.The following steps describe the basic operation:
The ECM determines the desired flow rates for the air and for the fuel. The flow rates are determined by these factors:
Desired engine speed
Actual engine speed
Calculated engine load
The command for the flow of the fuel is sent to the electronic fuel metering valve via the CAN data link. This process is repeated continuously during engine operation.Start/Stop Sequencing
The ECM contains the logic and the outputs for control of starting and of shutdown. The customer programmable logic responds to signals from the following components: engine control, emergency stop switch, remote start switch, data link and other inputs.When the programmable logic determines that it is necessary to crank the engine, the ECM supplies +Battery voltage to the relay for the starting motor. The ECM removes the voltage when the programmable crank terminate speed is reached or when a programmable cycle crank time has expired.The engine must be equipped with an energize-to-run type of gas shutoff valve (GSOV). The source of the voltage to the GSOV depends on the engine's configuration. The GSOV may be energized by the customer's equipment or by the engine's control system.If the engine's control system controls the GSOV, the ECM supplies +Battery voltage to the GSOV whenever the programmable logic determines that fuel is required to operate the engine.For more information on programmable parameters, refer to Troubleshooting, "Programming Parameters".Engine Monitoring and Protection
The ECM monitors both the engine operation and the electronic system.Problems with engine operation such as low oil pressure produce an event code. The ECM can issue a warning, a derating, or a shutdown. This depends on the severity of the condition. For more information, refer to Troubleshooting, "Troubleshooting With An Event Code".Problems with the electronic system such as an open circuit produce a diagnostic code. For more information, refer to Troubleshooting, "Troubleshooting With A Diagnostic Code".Ignition Control
The ECM provides variable ignition timing that is sensitive to detonation.Each cylinder has an ignition transformer that is located under the valve cover for the cylinder. To initiate combustion, the ECM sends a pulse of approximately 100 volts to the primary coil of an ignition transformer at the appropriate time and for the appropriate duration. The transformer steps up the voltage in order to create a spark across the spark plug electrode.Detonation sensors monitor the engine for excessive detonation. The engine has eight detonation sensors. Each sensor monitors two adjacent cylinders. The sensors generate data on vibration that is processed by the ECM in order to determine detonation levels. If detonation reaches an unacceptable level, the ECM retards the ignition timing of the affected cylinder or cylinders. If retarding the timing does not limit detonation to an acceptable level, the ECM shuts down the engine.The ECM provides extensive diagnostics for the ignition system. The ECM also provides a switch input for ignition timing in order to allow operation with alternate fuels such as propane that require a timing offset.
Parts camshaft JOHNSON:
5035509
5035509 CAMSHAFT, INTAKE STBD (225HP)
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS
5034902
5034902 CAMSHAFT, INTAKE PORT (200HP)
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS
5035510
5035510 CAMSHAFT, INTAKE PORT (225HP)
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS
5034903
5034903 CAMSHAFT, EXH STBD
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS
5034904
5034904 CAMSHAFT, EXH PORT
BJ200CX4DC, BJ200X4SDC, BJ225CX4DC, BJ225X4SDC, J200CX4SOC, J200CX4SRS, J200PX4SOC, J200PX4SRS, J225CX4SOC, J225CX4SRS, J225PX4SOC, J225PX4SRS