0389263 HORN ASSEMBLY JOHNSON
100ML79S, 115ML79R, 140ML79R, 150TL79C, 175TL79R, 200TL79A, 235TL70A, 50R79C, 55E79C, 70EL79R, 75ELR79R, 85ML79R, CJ275TLCDC, CJ275TLCOS, CJ300TLCDC, CJ300TLCOS, D100WTLM, J100MLCSC, J100STLCCA, J100WMLCDR, J100WMLCOC, J100WMLCRS, J100WTLCUA, J110MLC
HORN
Price: query
Rating:
Compatible models:
100ML79S
115ML79R
140ML79R
150TL79C
175TL79R
200TL79A
235TL70A
50R79C
55E79C
70EL79R
75ELR79R
85ML79R
CJ275TLCDC
CJ275TLCOS
CJ300TLCDC
CJ300TLCOS
D100WTLM
J100MLCSC
J100STLCCA
J100WMLCDR
J100WMLCOC
J100WMLCRS
J100WTLCUA
J110MLCCA
J110MLCDC
J110MLCUR
J115MLCIH
J115MLCNB
J115MLCOS
J115MLCRD
J115MLCSA
J115MLCTE
J120TLCCA
J120TLCDC
J120TLCOS
J120TLCUR
J140CXCCS
J140MLCIH
J140MLCNB
J140MLCSA
J140MLCTE
J140TLCDC
J140TLCOS
J140TLCRD
J140TLCUA
J150CXCCA
J150GTLCUR
J150STLACA
J150STLCDC
J150STLCOH
J150STLCRD
J150STLCTE
J150TLCDC
J150TLCIA
J150TLCNM
J150TLCOS
J150TLCRD
J150TLCSF
J150TLCTB
J150TLCUR
J155WTLCDR
J155WTLCOC
J155WTLCRS
J155WTLCUA
J175STLACM
J175TLCDR
J175TLCIH
J175TLCNB
J175TLCOC
J175TLCSA
J175TLCTD
J175TLCUA
J185TLCOC
J185TLCRS
J200CXCCR
J200STLCDR
J200STLCUA
J200TLCIH
J200TLCNE
J200TLCSF
J200TLCTD
J20CRCCA
J20CRCDC
J20CRCOS
J20CRCUR
J225CLCUB
J225CXCCE
J225PTLCDA
J235STLCOR
J235STLCRC
J235STLCTS
J235TLCIB
J235TLCNE
J235TLCOR
J235TLCRC
J235TLCSM
J235TLCTD
J25ECCM
J25ECDR
J25ECNE
J25ECOC
J25ECRS
J25ECTD
J25ECUA
J275CLCUR
J275CXCCA
J28ELCDS
J28ESLCCR
J28ESLCUC
J300CLCUR
J300CXCCA
J30ECCE
J30ECDM
J30ECOA
J30ECRR
J30ECUB
J35AELCDE
J35AELCUD
J35ECND
J35ECRR
J35ECTS
J35RCCE
J35RCDM
J35RCUB
J40AELCCS
J40ECDE
J40ECOB
J40ECRM
J40ECUD
J48ESLCCC
J48ESLCUS
J50BECCS
J50BECDE
J50BECIC
J50BECNR
J50BECOB
J50BECRM
J50BECTA
J50BECUD
J50ECSR
J55RCIM
J55RLCSA
J60ECIA
J60ECNM
J60ECSR
J60ECTB
J60ELCCR
J60ELCDS
J60ELCOD
J60ELCRE
J60ELCUC
J65RWLCRS
J65WMLCDR
J65WMLCOC
J65WMLCUA
J70ELCCA
J70ELCDC
J70ELCIH
J70ELCNB
J70ELCOS
J70ELCRD
J70ELCSA
J70ELCTE
J70ELCUR
J75ECCA
J75ECDC
J75ECNB
J75ECOS
J75ECRD
J75ECTE
J75ECUR
J75ERCIH
J75ERCSA
J85MLCSA
J88MSLCCC
J88MSLCUS
J90MLCDC
J90MLCIH
J90MLCNB
J90MLCOS
J90MLCRD
J90MLCTE
J90MLCUR
N65WMLM
X155WTLM
JOHNSON
BRP JOHNSON entire parts catalog list:
- REMOTE CONTROL » 0389263
140ML79R, 140TL79R, 140TXL79R 1979
150TL79C, 150TXL79C 1979
175TL79R, 175TXL79R 1979
200TL79A, 200TXL79A 1979
235TL70A, 235TXL79A 1979
50R79C, 50RL79C 1979
55E79C, 55EL79C 1979
70EL79R 1979
75ELR79R, 75ER79R 1979
85ML79R, 85TL79R, 85TXL79R 1979
CJ275TLCDC, CJ275TXCDC, J275PTLCDC, J275PTXCDC 1986
CJ275TLCOS, CJ275TXCOS, J275TLCOS, J275TXCOS 1985
CJ300TLCDC, CJ300TXCDC, J300TLCDC, J300TXCDC 1986
CJ300TLCOS, CJ300TXCOS, J300TLCOS, J300TXCOS 1985
D100WTLM, D100WTXM 1988
J100MLCSC, J100TRLCSC, J100TRXCSC 1980
J100STLCCA 1988
J100WMLCDR, J100WTLCDR, J100WTXCDR 1986
J100WMLCOC, J100WTLCOC 1985
J100WMLCRS, J100WTLCRS 1984
J100WTLCUA, J100WTXCUA 1987
J110MLCCA, J110TLCCA, J110TXCCA 1988
J110MLCDC, J110TLCDC, J110TLCDF 1986
J110MLCUR, J110TLCUR, J110TXCUR 1987
J115MLCIH, J115MLCIM, J115TLCIH, J115TLCIM, J115TXCIH, J115TXCIM 1981
J115MLCNB, J115TLCNB, J115TXCNB 1982
J115MLCOS, J115TLCOS 1985
J115MLCRD, J115TLCRD, J115TXCRD 1984
J115MLCSA, J115TLCSA, J115TXCSA 1980
J115MLCTE, J115TLCTE, J115TXCTE 1983
J120TLCCA, J120TXCCA 1988
J120TLCDC, J120TXCDC 1986
J120TLCOS, J120TXCOS 1985
J120TLCUR, J120TXCUR 1987
J140CXCCS, J140TLCCM, J140TXCCM 1988
J140MLCIH, J140MLCIM, J140TLCIH, J140TLCIM, J140TXCIH, J140TXCIM 1981
J140MLCNB, J140TLCNB, J140TXCNB 1982
J140MLCSA, J140TLCSA, J140TXCSA 1980
J140MLCTE, J140TLCTE, J140TXCTE 1983
J140TLCDC, J140TXCDC 1986
J140TLCOS, J140TXCOS 1985
J140TLCRD, J140TXCRD 1984
J140TLCUA, J140TXCUA 1987
J150CXCCA, J150TLCCA, J150TXCCA 1988
J150GTLCUR, J150STLCUR 1987
J150STLACA, J150STLCCA 1988
J150STLCDC 1986
J150STLCOH, J150STLCOS 1985
J150STLCRD 1984
J150STLCTE 1983
J150TLCDC, J150TXCDC 1986
J150TLCIA, J150TLCIH, J150TXCIA, J150TXCIH 1981
J150TLCNM, J150TXCNM 1982
J150TLCOS, J150TXCOS 1985
J150TLCRD, J150TXCRD 1984
J150TLCSF, J150TLCSR, J150TXCSF, J150TXCSR 1980
J150TLCTB, J150TLCTE, J150TXCTB, J150TXCTE 1983
J150TLCUR, J150TXCUR 1987
J155WTLCDR, J155WTXCDR 1986
J155WTLCOC, J155WTXCOC 1985
J155WTLCRS, J155WTXCRS 1984
J155WTLCUA, J155WTXCUA 1987
J175STLACM, J175STLCCM, J175TLCCM, J175TXCCM 1988
J175TLCDR, J175TXCDR 1986
J175TLCIH, J175TLCIM, J175TXCIH, J175TXCIM 1981
J175TLCNB, J175TXCNB 1982
J175TLCOC, J175TXCOC 1985
J175TLCSA, J175TLCSF, J175TXCSA, J175TXCSF 1980
J175TLCTD, J175TLCTE, J175TXCTD, J175TXCTE 1983
J175TLCUA, J175TXCUA 1987
J185TLCOC, J185TXCOC 1985
J185TLCRS, J185TXCR 1984
J200CXCCR, J200STLACM, J200STLCCM, J200TXCCR 1988
J200STLCDR, J200TXCDS 1986
J200STLCUA, J200TXCUC 1987
J200TLCIH, J200TXCIB, J200TXCIH 1981
J200TLCNE, J200TXCNE 1982
J200TLCSF, J200TLCSM, J200TXCSF, J200TXCSM 1980
J200TLCTD, J200TLCTS, J200TXCTD, J200TXCTS 1983
J20CRCCA, J20CRLCCA, J20ECCA, J20ELCCA 1988
J20CRCDC, J20CRLCDC, J20ECDC, J20ELCDC, J20TECDC 1986
J20CRCOS, J20CRLCOS, J20ECOS, J20ELCOS 1985
J20CRCUR, J20CRLCUR, J20ECUR, J20ELCUR 1987
J225CLCUB, J225CXCUB, J225PLCUB, J225PXCUB, J225TLCUB, J225TXCUB 1987
J225CXCCE, J225PLCCE, J225PXCCE, J225TLCCE, J225TXCCE 1988
J225PTLCDA, J225PTXCDA, J225TLCDA, J225TXCDA 1986
J235STLCOR 1985
J235STLCRC 1984
J235STLCTS 1983
J235TLCIB, J235TLCIH, J235TXCIB, J235TXCIH 1981
J235TLCNE, J235TXCNE 1982
J235TLCOR, J235TXCOR 1985
J235TLCRC, J235TXCRC 1984
J235TLCSM, J235TXCSM 1980
J235TLCTD, J235TLCTS, J235TXCTD, J235TXCTS 1983
J25ECCM, J25ELCCM, J25RCCA, J25RLCCA, J25TECCA, J25TELCCA 1988
J25ECDR, J25ELCDR, J25RCDC, J25RDC, J25RLCDC, J25TECDC, J25TELCDC 1986
J25ECNE, J25ELCNE, J25RCNB, J25RELCNB, J25RLCNB, J25TECNB 1982
J25ECOC, J25ELCOC, J25RCOS, J25RLCOS, J25TECOS, J25TELCOS 1985
J25ECRS, J25ELCRS, J25RCRD, J25RLCRD, J25TECRD, J25TELCRD 1984
J25ECTD, J25ELCTD, J25RCTE, J25RLCTE, J25TECTE, J25TELCTE 1983
J25ECUA, J25ELCUA, J25RCUR, J25RLCUR, J25TECUR, J25TELCUR 1987
J275CLCUR, J275CXCUR, J275PLCUR, J275PXCUR 1987
J275CXCCA, J275PLCCA, J275PXCCA 1988
J28ELCDS 1986
Information:
Grounding Practices
Proper grounding for the electrical system is necessary for proper engine performance and reliability. Improper grounding will result in unreliable electrical circuit paths and in uncontrolled electrical circuit paths.Uncontrolled engine electrical circuit paths can result in damage to the main bearings, to the crankshaft bearing journal surfaces, and to the aluminum components.Uncontrolled electrical circuit paths can cause electrical noise which may degrade performance.In order to ensure proper functioning of the electrical system, an engine-to-frame ground strap with a direct path to the battery must be used. This may be provided by a ground for the starting motor, by a frame to the ground for the starting motor, or by a direct frame to engine ground. An engine-to-frame ground strap must be run from the grounding stud of the engine to the frame and to the negative battery post.Connect the battery negative post to the frame rail. From the frame rail, connect the ground wire to one of the following locations:
Cylinder head ground stud
Optional engine ground stud connectionThe engine must be grounded to the frame rail. Connect the battery negative post to one of the following locations:
Cylinder head ground stud
Optional engine ground stud connectionThe engine must have a ground wire to the battery.Ground wires or ground straps should be combined at the studs that are only for ground use.All of the ground paths must be capable of carrying any potential currents. The engine alternator should be grounded to the battery with a wire size that is capable of managing the full charging current of the alternator.
When jump starting an engine, the instructions in the Operation and Maintenance Manual, "Starting with Jump Start Cables" should be followed in order to properly start the engine.This engine may be equipped with a 12 volt starting system or with a 24 volt starting system. Only equal voltage for boost starting should be used. The use of a welder or of a higher voltage will damage the electrical system.
The engine has several input components which are electronic. These components require an operating voltage.This engine is tolerant to common external sources of electrical noise. Electromechanical buzzers can cause disruptions in the power supply. If electromechanical buzzers are used near the system, the engine electronics should be powered directly from the battery system through a dedicated relay. The engine electronics should not be powered through a common power bus with other devices that are activated by the Engine Control Switch (ECS).Engine Electrical System
The electrical system can have three separate circuits. The three circuits are the charging circuit, the starting circuit, and the low amperage circuit. Some of the electrical system components are used in more than one circuit.The charging circuit is in operation when the engine is running. An alternator creates electricity for the charging circuit. A voltage regulator in the circuit controls the electrical output in order to maintain the battery at full charge.The starting circuit is in operation when the start switch is activated.The low amperage circuit and the charging circuit are connected through the ammeter. The starting circuit is not connected through the ammeter.Charging System Components
Alternator
The alternator is driven by the crankshaft pulley through a belt that is a Poly-vee type. This alternator is a three-phase self-rectifying charging unit. The regulator is part of the alternator.The alternator design has no need for slip rings or for brushes. The only part of this alternator that moves is the rotor assembly. All of the conductors that carry current are stationary. The following components are the conductors: the field winding, the stator windings, six rectifying diodes and the regulator circuit.The rotor assembly has many magnetic poles with air space between each of the opposite poles. The poles have residual magnetism that produces a small amount of magnet-like lines of force (magnetic field). This magnetic field is produced between the poles. As the rotor assembly begins to turn between the field winding and the stator windings, a small amount of Alternating Current (AC) is produced in the stator windings. The alternating current is produced from the small magnetic lines of force that are created by the residual magnetism of the poles. The AC is changed into Direct Current (DC) when the current passes through the diodes of the rectifier bridge. Most of this current provides the battery charge and the supply for the low amperage circuit. The remainder of current is sent to the field windings. The DC current flow through the field windings (wires around an iron core) increases the strength of the magnetic lines of force. These stronger magnetic lines of force increase the amount of AC that is produced in the stator windings. The increased speed of the rotor assembly also increases the current output of the alternator and the voltage output of the alternator.The voltage regulator is a solid-state electronic switch. The voltage regulator senses the voltage of the system. The regulator then uses switches to control the current to the field windings. This controls the voltage output in order to meet the electrical demand of the system.
The alternator should never be operated without the battery in the circuit. The making or the breaking of an alternator connection with a heavy load on the circuit can cause damage to the regulator.
Illustration 1 g01096944
Typical cross section of an alternator
(1) Regulator
(2) Roller bearing
(3) Stator winding
(4) Ball bearing
(5) Rectifier bridge
(6) Field winding
(7) Rotor assembly
(8) Fan Starting System Components
Solenoid
Illustration 2 g00292316
Typical cross section of a solenoid
A solenoid is an electromagnetic switch that performs two basic functions:
The solenoid closes the high current circuit for the starting motor with a low current start switch circuit.
The solenoid engages the pinion for the starting motor with the ring gear.The solenoid has windings (one set or two sets) around a hollow cylinder or a hollow housing. A plunger that is spring loaded is located within the solenoid housing. The plunger can move forward and backward. When the start switch is closed and electricity is sent through the windings, a magnetic field is created. The magnetic field pulls the plunger forward in the
Proper grounding for the electrical system is necessary for proper engine performance and reliability. Improper grounding will result in unreliable electrical circuit paths and in uncontrolled electrical circuit paths.Uncontrolled engine electrical circuit paths can result in damage to the main bearings, to the crankshaft bearing journal surfaces, and to the aluminum components.Uncontrolled electrical circuit paths can cause electrical noise which may degrade performance.In order to ensure proper functioning of the electrical system, an engine-to-frame ground strap with a direct path to the battery must be used. This may be provided by a ground for the starting motor, by a frame to the ground for the starting motor, or by a direct frame to engine ground. An engine-to-frame ground strap must be run from the grounding stud of the engine to the frame and to the negative battery post.Connect the battery negative post to the frame rail. From the frame rail, connect the ground wire to one of the following locations:
Cylinder head ground stud
Optional engine ground stud connectionThe engine must be grounded to the frame rail. Connect the battery negative post to one of the following locations:
Cylinder head ground stud
Optional engine ground stud connectionThe engine must have a ground wire to the battery.Ground wires or ground straps should be combined at the studs that are only for ground use.All of the ground paths must be capable of carrying any potential currents. The engine alternator should be grounded to the battery with a wire size that is capable of managing the full charging current of the alternator.
When jump starting an engine, the instructions in the Operation and Maintenance Manual, "Starting with Jump Start Cables" should be followed in order to properly start the engine.This engine may be equipped with a 12 volt starting system or with a 24 volt starting system. Only equal voltage for boost starting should be used. The use of a welder or of a higher voltage will damage the electrical system.
The engine has several input components which are electronic. These components require an operating voltage.This engine is tolerant to common external sources of electrical noise. Electromechanical buzzers can cause disruptions in the power supply. If electromechanical buzzers are used near the system, the engine electronics should be powered directly from the battery system through a dedicated relay. The engine electronics should not be powered through a common power bus with other devices that are activated by the Engine Control Switch (ECS).Engine Electrical System
The electrical system can have three separate circuits. The three circuits are the charging circuit, the starting circuit, and the low amperage circuit. Some of the electrical system components are used in more than one circuit.The charging circuit is in operation when the engine is running. An alternator creates electricity for the charging circuit. A voltage regulator in the circuit controls the electrical output in order to maintain the battery at full charge.The starting circuit is in operation when the start switch is activated.The low amperage circuit and the charging circuit are connected through the ammeter. The starting circuit is not connected through the ammeter.Charging System Components
Alternator
The alternator is driven by the crankshaft pulley through a belt that is a Poly-vee type. This alternator is a three-phase self-rectifying charging unit. The regulator is part of the alternator.The alternator design has no need for slip rings or for brushes. The only part of this alternator that moves is the rotor assembly. All of the conductors that carry current are stationary. The following components are the conductors: the field winding, the stator windings, six rectifying diodes and the regulator circuit.The rotor assembly has many magnetic poles with air space between each of the opposite poles. The poles have residual magnetism that produces a small amount of magnet-like lines of force (magnetic field). This magnetic field is produced between the poles. As the rotor assembly begins to turn between the field winding and the stator windings, a small amount of Alternating Current (AC) is produced in the stator windings. The alternating current is produced from the small magnetic lines of force that are created by the residual magnetism of the poles. The AC is changed into Direct Current (DC) when the current passes through the diodes of the rectifier bridge. Most of this current provides the battery charge and the supply for the low amperage circuit. The remainder of current is sent to the field windings. The DC current flow through the field windings (wires around an iron core) increases the strength of the magnetic lines of force. These stronger magnetic lines of force increase the amount of AC that is produced in the stator windings. The increased speed of the rotor assembly also increases the current output of the alternator and the voltage output of the alternator.The voltage regulator is a solid-state electronic switch. The voltage regulator senses the voltage of the system. The regulator then uses switches to control the current to the field windings. This controls the voltage output in order to meet the electrical demand of the system.
The alternator should never be operated without the battery in the circuit. The making or the breaking of an alternator connection with a heavy load on the circuit can cause damage to the regulator.
Illustration 1 g01096944
Typical cross section of an alternator
(1) Regulator
(2) Roller bearing
(3) Stator winding
(4) Ball bearing
(5) Rectifier bridge
(6) Field winding
(7) Rotor assembly
(8) Fan Starting System Components
Solenoid
Illustration 2 g00292316
Typical cross section of a solenoid
A solenoid is an electromagnetic switch that performs two basic functions:
The solenoid closes the high current circuit for the starting motor with a low current start switch circuit.
The solenoid engages the pinion for the starting motor with the ring gear.The solenoid has windings (one set or two sets) around a hollow cylinder or a hollow housing. A plunger that is spring loaded is located within the solenoid housing. The plunger can move forward and backward. When the start switch is closed and electricity is sent through the windings, a magnetic field is created. The magnetic field pulls the plunger forward in the