0322133 STEERING HANDLE JOHNSON
10E76G, 10E77A, 10E78M, 10EL79B, 15E76A, 15E77M, 15E78B, 15E79E, J10ECOM, J10ECSE, J10ELCID, J10ELCNS, J10ELCRA, J10ELCTC, J15ECIS, J15ECNC, J15ECOB, J15ECRM, J15ECSD, J15ECTR
STEERING
Price: query
Rating:
Compatible models:
BRP JOHNSON entire parts catalog list:
- EXHAUST HOUSING » 0322133
10E78M, 10EL78M, 10R78M, 10RL78M, 10SEL78M 1978
10EL79B, 10R79B, 10RL79B, 10SEL79B 1979
15E76A, 15E76R, 15EL76A, 15EL76R, 15R76A, 15R76R, 15RL76A, 15RL76R 1976
15E77M, 15EL77M, 15R77M, 15RL77M 1977
15E78B, 15EL78B, 15R78B, 15RL78B 1978
15E79E, 15EL79E, 15R79E, 15RL79E 1979
J10ECOM, J10ELCOM, J10RCOM, J10RLCOM, J10SELCOM 1985
J10ECSE, J10ELCSE, J10RCSE, J10RLCSE, J10SELCSE 1980
J10ELCID, J10RCID, J10RLCID, J10SELCID 1981
J10ELCNS, J10RCNS, J10RLCNS, J10SELCNS 1982
J10ELCRA, J10RCRA, J10RLCRA, J10SELCRA 1984
J10ELCTC, J10RCTC, J10RCTR, J10RLCTC, J10RLCTR, J10SELCTC 1983
- EXHAUST HOUSING-9.9"C" MODELS,15 ROPE "R" MODELS
- EXHAUST HOUSING 9.9 "R" MODELS,15 ELECT START & "A" MODELS
J15ECNC, J15RCNC, J15RLCNC 1982
J15ECOB, J15ELCOB, J15RCOB, J15RLCOB 1985
J15ECRM, J15ELCRM, J15RCRM, J15RLCRM 1984
J15ECSD, J15ELCSD, J15RCSD, J15RLCSD 1980
J15ECTR, J15ELCTR, J15RCTA, J15RCTR, J15RLCTA, J15RLCTR 1983
Information:
determine the cause of above normal coolant temperatures:
Check the coolant level in the cooling system. If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant. Low coolant level is caused by leaks or incorrectly filling the expansion tank.
Check the mixture of antifreeze and water. The mixture should be approximately 50 percent water and 50 percent antifreeze with 3 to 6 percent coolant conditioner. If the coolant mixture is incorrect, drain the system. Put the correct mixture of water, antifreeze and coolant conditioner in the cooling system.
Check for air in the cooling system. Air can enter the cooling system in different ways. The most common causes of air in the cooling system are not filling the cooling system correctly and combustion gas leakage into the cooling system. Combustion gas can get into the system through inside cracks, a damaged cylinder head, or a damaged cylinder head gasket. Air in the cooling system causes a reduction in coolant flow and bubbles in the coolant. Air bubbles keep coolant away from the engine parts, which prevents the transfer of heat to the coolant.
Check the sending unit. In some conditions, the temperature sensor in the engine sends signals to a sending unit. The sending unit converts these signals to an electrical impulse which is used by a mounted gauge. If the sending unit malfunctions, the gauge can show an incorrect reading. Also if the electric wire breaks or if the electric wire shorts out, the gauge can show an incorrect reading.
Check the heat exchanger for a restriction to coolant flow. Check the heat exchanger for debris, dirt, or deposits on the inside of the core. Debris, dirt, or deposits will restrict the flow of coolant through the heat exchanger.
Check the filler cap. A pressure drop in the cooling system can cause the boiling point to be lower. This can cause the cooling system to boil. Refer to Testing and Adjusting, "Cooling System - Test".
Check the cooling system hoses and clamps. Damaged hoses with leaks can normally be seen. Hoses that have no visual leaks can soften during operation. The soft areas of the hose can become kinked or crushed during operation. These areas of the hose can cause a restriction in the coolant flow. Hoses become soft and/or get cracks after a period of time. The inside of a hose can deteriorate, and the loose particles of the hose can cause a restriction of the coolant flow.
Check for a restriction in the air inlet system. A restriction of the air that is coming into the engine can cause high cylinder temperatures. High cylinder temperatures require higher than normal temperatures in the cooling system.
Check for a restriction in the exhaust system. A restriction of the air that is coming out of the engine can cause high cylinder temperatures.
Make a visual inspection of the exhaust system.
Check for damage to exhaust piping. Check for damage to the exhaust elbow. If no damage is found, check the exhaust system for a restriction.
Check the water temperature regulator. A water temperature regulator that does not open, or a water temperature regulator that only opens part of the way can cause overheating. Refer to Testing and Adjusting, "Water Temperature Regulator - Test".
Check the jacket water pump. A jacket water pump with a damaged impeller does not pump enough coolant for correct engine cooling. Remove the water pump and check for damage to the impeller.
Check the auxiliary water pump. An auxiliary water pump with a damaged impeller will not pump sea water to the heat exchanger. The sea water removes heat from the engine coolant. Check the sea water strainer for debris. Remove the auxiliary water pump and inspect the rubber impeller.
Check the air flow through the engine compartment. Not enough air flow over the engine can affect the engine operating temperature.
Consider high outside temperatures. When outside temperatures are too high for the rating of the cooling system, there is not enough of a temperature difference between the outside air and coolant temperatures. The maximum ambient air that enters the engine should not exceed 50 °C (120 °F).
The engine may be running in the lug condition. When the load that is applied to the engine is too large, the engine will run in the lug condition. When the engine is running in the lug condition, engine rpm does not increase with an increase of fuel. This lower engine rpm causes a reduction in coolant flow through the system. This combination of less air and less coolant flow during high input of fuel will cause above normal heating.
Timing of the engine which is incorrect may also cause overheating of the engine. Late timing creates more heat in the engine. Early timing creates less heat in the engine. Note: If the timing of the engine is incorrect, the exhaust valves may be burned and damage to the exhaust manifold may occur.
Check the coolant level in the cooling system. If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant. Low coolant level is caused by leaks or incorrectly filling the expansion tank.
Check the mixture of antifreeze and water. The mixture should be approximately 50 percent water and 50 percent antifreeze with 3 to 6 percent coolant conditioner. If the coolant mixture is incorrect, drain the system. Put the correct mixture of water, antifreeze and coolant conditioner in the cooling system.
Check for air in the cooling system. Air can enter the cooling system in different ways. The most common causes of air in the cooling system are not filling the cooling system correctly and combustion gas leakage into the cooling system. Combustion gas can get into the system through inside cracks, a damaged cylinder head, or a damaged cylinder head gasket. Air in the cooling system causes a reduction in coolant flow and bubbles in the coolant. Air bubbles keep coolant away from the engine parts, which prevents the transfer of heat to the coolant.
Check the sending unit. In some conditions, the temperature sensor in the engine sends signals to a sending unit. The sending unit converts these signals to an electrical impulse which is used by a mounted gauge. If the sending unit malfunctions, the gauge can show an incorrect reading. Also if the electric wire breaks or if the electric wire shorts out, the gauge can show an incorrect reading.
Check the heat exchanger for a restriction to coolant flow. Check the heat exchanger for debris, dirt, or deposits on the inside of the core. Debris, dirt, or deposits will restrict the flow of coolant through the heat exchanger.
Check the filler cap. A pressure drop in the cooling system can cause the boiling point to be lower. This can cause the cooling system to boil. Refer to Testing and Adjusting, "Cooling System - Test".
Check the cooling system hoses and clamps. Damaged hoses with leaks can normally be seen. Hoses that have no visual leaks can soften during operation. The soft areas of the hose can become kinked or crushed during operation. These areas of the hose can cause a restriction in the coolant flow. Hoses become soft and/or get cracks after a period of time. The inside of a hose can deteriorate, and the loose particles of the hose can cause a restriction of the coolant flow.
Check for a restriction in the air inlet system. A restriction of the air that is coming into the engine can cause high cylinder temperatures. High cylinder temperatures require higher than normal temperatures in the cooling system.
Check for a restriction in the exhaust system. A restriction of the air that is coming out of the engine can cause high cylinder temperatures.
Make a visual inspection of the exhaust system.
Check for damage to exhaust piping. Check for damage to the exhaust elbow. If no damage is found, check the exhaust system for a restriction.
Check the water temperature regulator. A water temperature regulator that does not open, or a water temperature regulator that only opens part of the way can cause overheating. Refer to Testing and Adjusting, "Water Temperature Regulator - Test".
Check the jacket water pump. A jacket water pump with a damaged impeller does not pump enough coolant for correct engine cooling. Remove the water pump and check for damage to the impeller.
Check the auxiliary water pump. An auxiliary water pump with a damaged impeller will not pump sea water to the heat exchanger. The sea water removes heat from the engine coolant. Check the sea water strainer for debris. Remove the auxiliary water pump and inspect the rubber impeller.
Check the air flow through the engine compartment. Not enough air flow over the engine can affect the engine operating temperature.
Consider high outside temperatures. When outside temperatures are too high for the rating of the cooling system, there is not enough of a temperature difference between the outside air and coolant temperatures. The maximum ambient air that enters the engine should not exceed 50 °C (120 °F).
The engine may be running in the lug condition. When the load that is applied to the engine is too large, the engine will run in the lug condition. When the engine is running in the lug condition, engine rpm does not increase with an increase of fuel. This lower engine rpm causes a reduction in coolant flow through the system. This combination of less air and less coolant flow during high input of fuel will cause above normal heating.
Timing of the engine which is incorrect may also cause overheating of the engine. Late timing creates more heat in the engine. Early timing creates less heat in the engine. Note: If the timing of the engine is incorrect, the exhaust valves may be burned and damage to the exhaust manifold may occur.
Parts steering JOHNSON:
0320686
0320686 STEERING BRACKET
10E75C, 10E76G, 10E77A, 10E78M, 10EL79B, 15E75C, 15E76A, 15E77M, 15E78B, 15E79E, J10ECSE, J10ELCID, J10ELCNS, J10ELCTC, J15ECIS, J15ECNC, J15ECSD, J15ECTR
0391274
0394211
0395463
0331360