0302565 JOHNSON WASHER,Thrust


0302565 WASHER,Thrust JOHNSON 33E69A, 33E69A, 33E70M, 33E70M, 40E69R, 40E70A, 40E71B, 40E72E, 40E73D, 40E74S, 40E75C, 40E76A, 40R69R, 40R70A, J40RSLR, J40RWCDB, J40RWCOM, J40RWCRA, RD-30A, RDS-30A, RX-16M WASHER
0302565 WASHER,Thrust JOHNSON
Rating:
13

Buy WASHER,Thrust 0302565 JOHNSON genuine, new aftermarket parts with delivery

You can buy parts:

As an associate, we earn commssions on qualifying purchases through the links below
$33.53
 

22-04-2019
600 Hundredths Pounds
Johnson/Ev: Johnson/Evinrude/OMC
Johnson/Evinrude/OMC New OEM WASHER 0302565, 302565
SKU: 0302565 || Sold Each || Please verify your own fitment
Number on catalog scheme: 36
 

BRP JOHNSON entire parts catalog list:

33E69A, 33EL69A, 33R69A, 33RL69A 1969
33E69A, 33EL69A, 33R69A, 33RL69A 1969
33E70M, 33EL70M, 33R70M, 33RL70M 1970
33E70M, 33EL70M, 33R70M, 33RL70M 1970
40E69R, 40EL69R 1969
40E70A, 40EL70A 1970
40E71B, 40E71G, 40EL71B, 40EL71G, 40R71B, 40R71G, 40RL71B, 40RL71G 1971
40E72E, 40EL72E, 40R72E, 40RL72E 1972
40E73D, 40EL73D, 40R73D, 40RL73D 1973
40E74S, 40EL74S, 40R74S, 40RL74S 1974
40E75C, 40EL75C, 40R75C, 40RL75C 1975
40E76A, 40E76R, 40EL76A, 40EL76R, 40R76A, 40R76R, 40RL76A, 40RL76R 1976
40R69R, 40RL69R 1969
40R70A, 40RL70A 1970
J40RSLR, J40RSR, J40RWCTR, J40RWLCTR 1983
J40RWCDB, J40RWLCDB 1986
J40RWCOM, J40RWLCOM 1985
J40RWCRA, J40RWLCRA 1984
RD-30A, RD-30D, RD-30S, RDL-30A, RDL-30D, RDL-30S 1968
RDS-30A, RDS-30C, RDS-30D, RDS-30S, RDSL-30A, RDSL-30C, RDSL-30D, RDSL-30S 1968
RX-16M, RX-16R, RXE-16M, RXE-16R, RXEL-16M, RXEL-16R, RXL-16M, RXL-16R 1968

Information:


Illustration 1 g02349356
Air inlet and exhaust system
(1) Aftercooler core
(2) Air filter
(3) Air control valve for the aftertreatment regeneration device
(4) Aftertreatment regeneration device
(5) Diesel particulate filter and diesel oxidation catalyst
(6) Low-pressure turbocharger
(7) High-pressure turbocharger
(8) Wastegate actuator
(9) Exhaust cooler (NRS)
(10) Exhaust gas valve (NRS)
(11) Inlet gas throttle valve
(12) Wastegate regulator The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The air inlet and exhaust system consists of the following components:
Air cleaner
Exhaust gas cooler (NRS)
Exhaust gas valve (NRS)
Turbochargers
Aftercooler
Inlet manifold
Cylinder head, injectors, and glow plugs
Valves and valve system components
Piston and cylinder
Exhaust manifold
Aftertreatment regeneration device
Diesel oxidation catalyst
Diesel particulate filter
Inlet gas throttle valveAir is drawn in through the air cleaner into the air inlet of the low-pressure turbocharger by the low-pressure turbocharger compressor wheel. The air is compressed to a pressure of about 150 kPa (22 psi) and heated to about 120° C (248° F). From the low-pressure turbocharger, the air passes to the high-pressure turbocharger. The air is compressed to a pressure of about 325 kPa (47 psi) and heated to about 240° C (464° F) before the air is forced to the aftercooler. As the air flows through the aftercooler, the temperature of the compressed air lowers to about 55° C (131° F). Cooling of the inlet air assists the combustion efficiency of the engine. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased horsepower output
Reduced NOx emission
Reduced particulate emissionFrom the aftercooler, the air flows to the exhaust gas valve (NRS). A mixture of air and exhaust gas is then forced into the inlet manifold. Air flow from the inlet manifold to the cylinders is controlled by inlet valves. There are two inlet valves and two exhaust valves for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is forced into the cylinder. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustOn the compression stroke, the piston moves back up the cylinder and the inlet valves close. The cool compressed air is compressed further. This additional compression generates more heat.Note: If the cold starting system is operating, the glow plugs will also heat the air in the cylinder.Just before the piston reaches the top center (TC) position, the ECM operates the electronic unit injector. Fuel is injected into the cylinder. The air/fuel mixture ignites. The ignition of the gases initiates the power stroke. Both the inlet and the exhaust valves are closed and the expanding gases force the piston downward toward the bottom center (BC) position.From the BC position, the piston moves upward. The piston moving forward initiates the exhaust stroke. The exhaust valves open. The exhaust gases are forced through the open exhaust valves into the exhaust manifold.
Illustration 2 g02297554
Typical example
The NOx Reduction System (NRS) operates with the transfer of the hot exhaust gas from the exhaust manifold to the exhaust cooler. The hot exhaust gas is cooled in the exhaust cooler (9). The now cooled exhaust gas passes through the assembly of the exhaust gas valve to an electronic controlled valve (10). The electronically controlled valve is electronically actuated.The reed valves that are located in the exhaust gas valve (NRS) have two main functions. The first function is to prevent the reverse flow of charge air from the inlet side of the engine to the exhaust side of the engine. The second function of the reed valve is to obtain exhaust gas when the peak exhaust pressure is above the average inlet pressure.As the electronically controlled valve (10) starts to open the flow of cooled exhaust gas from the exhaust cooler (9) mixes with the air flow from the charge air intercooler. The mixing of the cooled exhaust gas and the air flow from the charge air aftercooler reduces the oxygen content of the gas mixture. This results in a lower combustion temperature, so decreases the production of NOx.As the demand for more cooled exhaust gas increases the electronically controlled valve opens further. The further opening of the valve increases the flow of cooled exhaust gas from the exhaust cooler. As the demand for cooled exhaust gas decreases, the electronically controlled valve closes. This decreases the flow of cooled exhaust gas from the exhaust cooler.The electronically controlled exhaust gas valve and the inlet gas throttle valve (11) for the NOx Reduction System (NRS) are controlled by the ECM. In some instances, the engine will need to use the electronically controlled exhaust gas valve (10) and the inlet gas throttle valve (11) for the NOx Reduction System (NRS) in order to generate the required flow of exhaust gas. The inlet gas throttle valve for the NOx Reduction System (NRS) works by reducing the pressure in the inlet manifold in order to draw through extra exhaust gas.Exhaust gases from the exhaust manifold enter the inlet of the high-pressure turbocharger in order to turn the high-pressure turbocharger turbine wheel. The turbine wheel is connected to a shaft that rotates. The exhaust gases travel from the high-pressure turbocharger through the duct on the turbine side into the turbine inlet of the low-pressure turbocharger in order to power the low-pressure turbocharger. The exhaust gases pass from the low-pressure turbocharger through the following components: exhaust outlet, Aftertreatment Regeneration Device (ARD), Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and exhaust pipe.Turbochargers
Illustration 3 g00302786
Typical example of a cross section of a turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inlet The high-pressure turbocharger is mounted on the outlet of the exhaust manifold. The low-pressure turbocharger is mounted on the side of the cylinder block. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel


Parts washer JOHNSON:

0304051
 
0304051 WASHER
100ESL71A, 100ESL72R, 100ML79S, 10E74G, 10E75C, 10E76G, 10E77A, 10E78M, 10EL79B, 115EL77S, 115ESL69E, 115ESL70D, 115ESL73M, 115ESL74B, 115ESL75E, 115ETZ78C, 115ML79R, 115TXL77S, 125ESL71C, 125ESL72R, 135ESL73M, 135ESL74B, 135ESL75E, 140ML77S, 140ML78
0305981
 
0305981 WASHER
100ESL71A, 100ESL72R, 100ML79S, 10E74G, 10E75C, 115EL77S, 115ESL69E, 115ESL70D, 115ESL73M, 115ESL74B, 115ESL75E, 115ETZ78C, 115ML79R, 115TXL77S, 125ESL71C, 125ESL72R, 135ESL73M, 135ESL74B, 135ESL75E, 140ML77S, 140ML78C, 140ML79R, 150TL78S, 15E74G, 15
0306325
 
0306325 WASHER
100ESL71A, 100ESL72R, 100ML79S, 115EL77S, 115ESL69E, 115ESL70D, 115ESL73M, 115ESL74B, 115ESL75E, 115ETZ78C, 115ML79R, 115TXL77S, 125ESL71C, 125ESL72R, 135ESL73M, 135ESL74B, 135ESL75E, 140ML77S, 140ML78C, 140ML79R, 150TL78S, 150TL79C, 175TL77S, 175TL7
0301827
 
0301827 WASHER
33E69A, 33E69A, 33E70M, 33E70M, 40E69R, 40E70A, 40E71B, 40E72E, 40E73D, 40E74S, 40E75C, 40E76A, 40ES69R, 40ES70A, 40R69R, 40R70A, J40RSLR, J40RWCDB, J40RWCOM, J40RWCRA, RD-30A, RDS-30A, RK-30A, RX-16M, V4A-20A, V4S-20A, VX-14B
0551953
 
0551953 WASHER
25E77S, 25E78C, 25E79R, 33E69A, 33E69A, 33E70M, 33E70M, 35E76G, 35E77C, 35E78R, 35E79A, 40E69R, 40E70A, 40E71B, 40E72E, 40E73D, 40E74S, 40E75C, 40E76A, 40ES69R, 40ES70A, 40R69R, 40R70A, BJ20SEECB, BJ20SEEDA, BJ20SEEUM, BJ20SRECB, BJ20SREDA, BJ20SREUM
0900696
 
0900696 WASHER,Choke switch
100ESL71A, 100ESL72R, 115ESL69E, 115ESL70D, 115ESL73M, 115ESL74B, 115ESL75E, 125ESL71C, 125ESL72R, 135ESL73M, 135ESL74B, 135ESL75E, 200TL76S, 25E72R, 25E73A, 25E74M, 25E75B, 25E76E, 25E77S, 33E69A, 33E69A, 33E70M, 33E70M, 35E76G, 35E77C, 40E69R, 40E7
0310498
 
0310498 WASHER
100ESL71A, 100ESL72R, 115ESL69E, 115ESL70D, 115ESL73M, 125ESL71C, 125ESL72R, 135ESL73M, 25E72R, 25E73A, 25E74M, 25E75B, 25E76E, 25E77S, 25E78C, 25E79R, 33E69A, 33E69A, 33E70M, 33E70M, 35E76G, 35E77C, 35E78R, 35E79A, 40E69R, 40E70A, 40E71B, 40E72E, 40
0312937
 
0312937 WASHER, Solenoid plunger
100ML79S, 115ETZ78C, 115ML79R, 140ML78C, 140ML79R, 40E69R, 40E70A, 40E72E, 40E73D, 40E74S, 40E75C, 40E76A, 40ES69R, 40ES70A, 85ETLR78C, 85ML79R, RDS-30A, RK-30A
Back to top