803852 Mercruiser COUPLING


803852 COUPLING Mercruiser 00019003, 01321017, 01326013, 4S42028N1, 4S42028TS, 4S42028TT, 4S42028UT, 4S42028UU, 4S420P8UE, 5000165CE, 5111200LP, 5120150R1, 5231100LP, 5231100TP, 5232100N1, 5232100TP, 5E31200N1, 5E31200TP, 5E31200TS, 5E31210TP, 5E31210TS, 5E31800TP, 5E31800TS, COUPLING
803852 COUPLING Mercruiser
Rating:
93

Buy COUPLING 803852 Mercruiser genuine, new aftermarket parts with delivery

You can buy parts:

As an associate, we earn commssions on qualifying purchases through the links below
$45.00
 

12-07-2022
0.01543235834[0.00] Pound
-: -
Mercury / Quicksilver Coupling- P/T Pump
Number on catalog scheme: 2
 

Mercruiser entire parts catalog list:

00019003 1983,1984,1985,1986,1987,1988,1989,1990
01321017 1987
01326013 1983
4S42028N1 1998
4S42028TS 1998
4S42028TT 1998
4S42028UT 1998
4S42028UU 1998
4S420P8UE 1998
5000165CE 1990,1991
5111200LP 1998
5120150R1 1998
5231100LP 1998
5231100TP 1998
5232100N1 1998
5232100TP 1998
5E31200N1 1998
5E31200TP 1998
5E31200TS 1998
5E31210TP 1998
5E31210TS 1998
5E31800TP 1998
5E31800TS 1998
5E31810TP 1998
5E31810TS 1998
5E31900TP 1998
5E31900TS 1998
5E31910TP 1998
5E31910TS 1998
5E32200TP 1998
5E32900TS 1998
5E36200TP 1998
5E36200TS 1998
5E36210TP 1998
5E36210TS 1998
5E36800TP 1998
5E36800TS 1998
5E36810TP 1998
5E36810TS 1998
5E36900TS 1998
5E36910TP 1998
5E36910TS 1998
5H41400TP 1998
5H41410TP 1998
5H41410TS 1998
5H41600TP 1998
5H41610TP 1998
5H41610TS 1998
5H42300TP 1998
5H42300TS 1998
5H42400TS 1998
5M41400TP 1998
5M41400TS 1998
5M42300TP 1998
5M42300TS 1998
5T32300TP 1998
5T32300TS 1998
5X32200TS 1998
6211001N1 1998
6311002NZ 1998
6315001N1 1998
6315002NZ 1998
6416003N2 1998
6511102N1 1998
6811001N1 1998

Information:


Table 1
Diagnostic Trouble Codes for High Intake Manifold Air Temperature
J1939 Code Code Description Comments
105-15 Engine Intake Manifold #1 Temperature : High - least severe (1) The engine has been running for 3 minutes.
No other 105 codes are active.
168 codes are not active.
Code 412-16 is not active.
The intake manifold air temperature exceeds the value that is programmed into the ECM for 8 seconds. The code is logged.
This code will be reset when the temperature is less than 122° C (252° F) for 4 seconds.
105-16 Engine Intake Manifold #1 Temperature : High - Moderate Severity (2) The engine has been running for 3 minutes.
No other 105 codes are active.
168 codes are not active.
Code 412-16 is not active.
The intake manifold air temperature exceeds the value that is programmed into the ECM for 8 seconds. The engine will be derated. The code is logged.
This code will be reset when the temperature is less than 124° C (255° F) for 20 seconds.
105-0 Engine Intake Manifold #1 Temperature : High - most severe (3) The engine has been running for 3 minutes.
No other 105 codes are active.
168 codes are not active.
Code 412-16 is not active.
The intake manifold air temperature exceeds the value that is programmed into the ECM for 8 seconds. The engine will be shut down. The code is logged.
This code will be reset when the temperature is less than 124° C (255° F) for 20 seconds. Probable Causes
Coolant level
Air-to-air aftercooler (ATAAC)
Cooling fan
Air inlet and exhaust system
NRS valve
Ambient temperature
Altitude
Running conditionRecommended Actions
Note: The procedures have been listed in order of probability. Complete the procedures in order.
Table 2
Troubleshooting Test Steps Values Results
1. Coolant Level
A. Check that the coolant is filled to the correct level.
Note: If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow.
Coolant
Result: The coolant level is low.
Repair: Fill the coolant system to the correct level. Refer to the Operation and Maintenance Manual, "Coolant Level - Check".
Result: The coolant level is OK.
Proceed to Test Step 2.
2. Air-to-Air Aftercooler (ATAAC)
A. Check the ATAAC for debris or damage.
Note: Debris between the fins of the ATAAC core restricts air flow through the core.
ATAAC
Result: The ATAAC has excessive debris or is damaged.
Repair: Clear the debris from the ATAAC or replace the ATAAC.
Result: The ATAAC is OK.
Proceed to Test Step 3.
3. Cooling Fan
A. Check the operation of the cooling fan.
Note: A fan that is not turning at the correct speed can result in insufficient airflow through the aftercooler core.
Cooling fan
Result: The cooling fan is not operating correctly.
Repair: Investigate the cause of the incorrect fan operation
Result: The cooling fan is operating correctly.
Proceed to Test Step 4.
4. Air Intake and Exhaust System
A. Check the air intake and exhaust system for the following defects:
Blockages
Restrictions
Damage to the air intake ducts and hoses
Loose connections and air leaks
Air intake and exhaust
Result: The air intake or exhaust system is blocked, restricted, damaged, or loose.
Repair: Make all necessary repairs to the air intake system.
Result: The air intake and exhaust system is OK.
Proceed to Test Step 5.
5. NRS Valve
A. Use the electronic service tool to perform the "Air System Motor Valves Verification Test".
Check for active diagnostic codes that relate to the NRS valve.
Engine intake throttle valve
Result: There are active diagnostic codes that relate to the NRS valve.
Repair: Troubleshoot the active diagnostic codes. Refer to Troubleshooting, "Diagnostic Trouble Codes".
Result: The NRS valve is OK.
Proceed to Test Step 6.
6. Ambient Temperature
A. Check for a high ambient temperature.
Note: When outside temperatures are too high, there is insufficient temperature difference between the outside air and the intake air.
Ambient Temperature
Result: The ambient air temperature is high.
Repair: Operate the engine at reduced speed or reduced power.
Result: The ambient air temperature is OK.
Proceed to Test Step 7.
7. Altitude
A. Check for operation at high altitude.
Note: The cooling capacity of the ATAAC is reduced as the engine is operated at higher altitudes.
Altitude
Result: The engine is being operated at high altitude.
Repair: Operate the engine at reduced speed or reduced power.
Result: The engine is not being operated at high altitude.
Proceed to Test Step 8.
8. Running Condition
A. Check that the engine is not operating in the lug condition.
Note: When the load that is applied to the engine is too large, the engine will run in the lug condition. When the engine is running in the lug condition, engine rpm does not increase with an increase of fuel. This lower engine rpm causes a reduction in coolant flow through the system.
Running condition
Result: The engine is operating in the lug condition.
Repair: Reduce the load on the engine or, if possible, increase the power rating of the engine.
Result: The engine is not operating in the lug condition.
Contact the Dealer Solutions Network (DSN).


Parts coupling Mercruiser:

62787A 2
89493
 
89493 COUPLING
01321017, 03301310, 5000147JS, 5000150DP, 5000165CE, 5120136JS, 5120150AR, 5220200AS, 5231100LP, 5C30150FS, 6020006JS, 6211001N1, 6311002NZ, 6315002NZ, 6416003N2, 6511102N1, 6811001N1, 91331015
88243A 3
 
88243A 3 COUPLING ASSEMBLY
5120136JS, 5120150AR, 5120150R1, 5220200AS, 5231100LP, 5231100TP, 5232100N1, 5232100TP, 5C30150FS, 5E31200N1, 5E31200TP, 5E31200TS, 5E31210TP, 5E31210TS, 5E31800TP, 5E31800TS, 5E31810TP, 5E31810TS, 5E31900TP, 5E31900TS, 5E31910TP, 5E31910TS, 5E32200T
815956A 1
 
815956A 1 COUPLING ASSEMBLY, Speedometer
5000147JS, 5000150DP, 5000165CE
816597A 1
 
816597A 1 COUPLING ASSEMBLY
5000147JS, 5000150DP, 5000165CE, 5111200LP
Back to top