853113 KEY Mercruiser
473B116KD
KEY
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
$94.95
01-10-2022
30.22[13.60] Pounds
-: -
GSP 853113 Loaded Strut and Coil Spring Assembly for Select 1995-99 Nissan Maxima - Left Front (Driver Side)
GSP Loaded Strut Assemblies come complete with high quality struts, coil springs, strut mounts, and hardware and are ready to install, right out of the box, making installation quicker and easier || All new components, engineered to provide OE form, fit, and function, are used to manufacture our loaded strut assemblies, ensuring that ride comfort and handling are returned to factory fresh levels || Struts feature hi-performance 'Tri-Lock' PTFE piston rod seals, chrome plated piston rods, and a nitrogen gas charge; quality components and engineering ensure long term durability and heat resistance || Coil springs feature cold rolled SAE 9254 rated spring steel for strength and durability; premium quality strut mounts are designed to eliminate transfer of harmonic resonance to the vehicle body || Struts and springs are tuned specifically to each vehicle application to provide OE levels of comfort and stability regardless of road conditions or speed || Front Left: For select 1995-99 Nissan Maxima vehicles (verify fitment details with fit checker above)
GSP Loaded Strut Assemblies come complete with high quality struts, coil springs, strut mounts, and hardware and are ready to install, right out of the box, making installation quicker and easier || All new components, engineered to provide OE form, fit, and function, are used to manufacture our loaded strut assemblies, ensuring that ride comfort and handling are returned to factory fresh levels || Struts feature hi-performance 'Tri-Lock' PTFE piston rod seals, chrome plated piston rods, and a nitrogen gas charge; quality components and engineering ensure long term durability and heat resistance || Coil springs feature cold rolled SAE 9254 rated spring steel for strength and durability; premium quality strut mounts are designed to eliminate transfer of harmonic resonance to the vehicle body || Struts and springs are tuned specifically to each vehicle application to provide OE levels of comfort and stability regardless of road conditions or speed || Front Left: For select 1995-99 Nissan Maxima vehicles (verify fitment details with fit checker above)
Compatible models:
473B116KD
Mercruiser
Mercruiser entire parts catalog list:
Information:
Active Event Codes
An active event code represents a problem with engine operation. Correct the problem as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Illustration 1 is an example of the operating range of a temperature sensor. Do not use the Illustration to troubleshoot temperature sensors.
Illustration 1 g01138880
Example of the typical operating range of a temperature sensor (1) This area represents the normal operating range of the parameter. The normal output voltage of the sensor is between 0.2 VDC and 4.2 VDC. (2) In this area, the temperature above 107 °C (225 °F) is higher than normal. The output voltage of the sensor will generate an event code. The sensor does not have an electronic problem. (3) In these areas, the output voltage of the sensor is too high or too low. The voltage is outside of the normal range. The electronic problem will generate a diagnostic code. Refer to Troubleshooting, "Troubleshooting with a Diagnostic Code".Events are represented in two formats. In the first format, the "E" means that the code is an event code. The "XXX" represents a numeric identifier for the event code. The identifier is followed by a description of the code. If a warning or derate or shutdown is applicable, the numeric identifiers are different. Refer to the following example:
E004 Engine Overspeed ShutdownIn the second format, the "E" means that the code is an event code. The "XXX-X" represents a numeric identifier for the event code. The fourth "X" identifies the event as a warning, derate, or a shutdown.A description of the code follows. Refer to the following example:
E360-1 Low Oil Pressure Warning
E360-2 Low Oil Pressure Derate
E360-3 Low Oil Pressure ShutdownThe definition for a warning, derate, and a shutdown are defined below:Warning - This condition represents a serious problem with engine operation. However, this condition does not require derate or a shutdown.Derate - For this condition, the ECM reduces the engine power in order to help prevent possible engine damage.Shutdown - For this condition, the ECM shuts down the engine in order to help prevent possible engine damage.Logged Event Codes
Generated event codes are logged into the ECM permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent problems. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the problem which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint:
The event and the time of the event
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This check is important for problems that are intermittent. Refer to the diagnostic functional test Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the problem, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.Trip Points for the Monitoring System
The monitoring system determines the level of action that is taken by the ECM in response to a condition that can damage the engine. When any of these conditions occur, the appropriate event code will trip.Each event has a trip point. The trip points for some of the parameters may be adjustable with Caterpillar Electronic Technician (ET). The trip point is a value that is out of the normal operating range for a system such as the engine cooling system. Once the trip point has been exceeded, the ECM will generate an event code once the trip delay expires. The delay ensures that the condition is valid.Table 1 contains the conditions that are monitored and the default trip points for each condition. The actual setting for each parameter can be viewed with Cat ET.
Table 1
Trip Points for the Monitoring System    
Condition    Action    Delay Time in Seconds    Trip Point    Default State    
Min Max Default    Min    Max    Default    
E096(1) High Fuel Pressure     Warning     N/A     N/A     8     N/A     N/A    
758 kPa (110 psi)     On    
E162(2) Excessive Boost Pressure     Derate     N/A     N/A     8     N/A     N/A    
460 kPa (67 psi)     On    
E198(1) Low Fuel Pressure     Warning     N/A     N/A     10     N/A     N/A    
400 kPa (58 psi)     On    
E360(1) Low Engine Oil Pressure
    Warning     N/A     N/A     8     N/A     N/A     Maps are not programmable. (1)     On (2)    
E360(2) Low Engine Oil Pressure
    Derate     N/A     N/A     4     N/A     N/A     Maps are not programmable. (3)    
An active event code represents a problem with engine operation. Correct the problem as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Illustration 1 is an example of the operating range of a temperature sensor. Do not use the Illustration to troubleshoot temperature sensors.
Illustration 1 g01138880
Example of the typical operating range of a temperature sensor (1) This area represents the normal operating range of the parameter. The normal output voltage of the sensor is between 0.2 VDC and 4.2 VDC. (2) In this area, the temperature above 107 °C (225 °F) is higher than normal. The output voltage of the sensor will generate an event code. The sensor does not have an electronic problem. (3) In these areas, the output voltage of the sensor is too high or too low. The voltage is outside of the normal range. The electronic problem will generate a diagnostic code. Refer to Troubleshooting, "Troubleshooting with a Diagnostic Code".Events are represented in two formats. In the first format, the "E" means that the code is an event code. The "XXX" represents a numeric identifier for the event code. The identifier is followed by a description of the code. If a warning or derate or shutdown is applicable, the numeric identifiers are different. Refer to the following example:
E004 Engine Overspeed ShutdownIn the second format, the "E" means that the code is an event code. The "XXX-X" represents a numeric identifier for the event code. The fourth "X" identifies the event as a warning, derate, or a shutdown.A description of the code follows. Refer to the following example:
E360-1 Low Oil Pressure Warning
E360-2 Low Oil Pressure Derate
E360-3 Low Oil Pressure ShutdownThe definition for a warning, derate, and a shutdown are defined below:Warning - This condition represents a serious problem with engine operation. However, this condition does not require derate or a shutdown.Derate - For this condition, the ECM reduces the engine power in order to help prevent possible engine damage.Shutdown - For this condition, the ECM shuts down the engine in order to help prevent possible engine damage.Logged Event Codes
Generated event codes are logged into the ECM permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent problems. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the problem which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint:
The event and the time of the event
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This check is important for problems that are intermittent. Refer to the diagnostic functional test Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the problem, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.Trip Points for the Monitoring System
The monitoring system determines the level of action that is taken by the ECM in response to a condition that can damage the engine. When any of these conditions occur, the appropriate event code will trip.Each event has a trip point. The trip points for some of the parameters may be adjustable with Caterpillar Electronic Technician (ET). The trip point is a value that is out of the normal operating range for a system such as the engine cooling system. Once the trip point has been exceeded, the ECM will generate an event code once the trip delay expires. The delay ensures that the condition is valid.Table 1 contains the conditions that are monitored and the default trip points for each condition. The actual setting for each parameter can be viewed with Cat ET.
Table 1
Trip Points for the Monitoring System    
Condition    Action    Delay Time in Seconds    Trip Point    Default State    
Min Max Default    Min    Max    Default    
E096(1) High Fuel Pressure     Warning     N/A     N/A     8     N/A     N/A    
758 kPa (110 psi)     On    
E162(2) Excessive Boost Pressure     Derate     N/A     N/A     8     N/A     N/A    
460 kPa (67 psi)     On    
E198(1) Low Fuel Pressure     Warning     N/A     N/A     10     N/A     N/A    
400 kPa (58 psi)     On    
E360(1) Low Engine Oil Pressure
    Warning     N/A     N/A     8     N/A     N/A     Maps are not programmable. (1)     On (2)    
E360(2) Low Engine Oil Pressure
    Derate     N/A     N/A     4     N/A     N/A     Maps are not programmable. (3)    
Parts key Mercruiser:
7034
7034 KEY, ROTOR ASSEMBLY SHAFT
01206002, 01207333, 01326013, 01402414, 01406002, 01407333, 01751347, 01851333, 01854335, 02287333, 02297343, 02602347, 02607333, 02608427, 03302336, 03307332, 03308333, 04544347, 06661346, 07711346, 08986342, 228801, 260801, 30001854, 32001876, 3701
805678
805678 KEY SWITCH
40420001D, 428B116KD, 442B110GD, 442B115KD, 473B116KD, 473B1F0GS, 4A72040ND, 4C72040TD, 4C8204DLD, 4CJ2040ND, 4V71222ND, 4V71222PD, 4V71222TD
808120