888470T06 Mercury CONNECTING ROD ASSEMBLY


888470T06 CONNECTING ROD ASSEMBLY Mercury 1075D73FY, 1090D73CD CONNECTING
888470T06 CONNECTING ROD ASSEMBLY Mercury
Rating:
73

Buy CONNECTING ROD ASSEMBLY 888470T06 Mercury genuine, new aftermarket parts with delivery

You can buy parts:

As an associate, we earn commssions on qualifying purchases through the links below
$378.99

03-12-2024
1.38[0.62] pounds
US: Big Wide Seller
MERCURY CONNECTING ROD
Boating Accessories Mercury || 600-888470T06 || Used, No Damage or Corrosion || 2004-2006 || 75, 90, 115 Hp DFI 1.5L 3 Cyl
Number on catalog scheme: 14
 

Compatible models:

Mercury entire parts catalog list:

1075D73FY 2006
1090D73CD 2004,2005

Information:


Illustration 1 g06597864
Schematic of the air/fuel ratio control
(1) ECM in a remote panel
(2) Manifold air pressure sensor
(3) Oxygen buffer
(4) Oxygen sensor
(5) Inlet manifold temperature sensor
(6) Actuator
(7) Fuel valve
(8) Caterpillar Electronic Technician ( ET)ECM (1) is the main component of the system. For the air/fuel ratio control, three inputs are provided to the ECM by sensors on the engine: inlet manifold air pressure, inlet manifold air temperature and exhaust oxygen level. The ECM uses the inputs to calculate the desired fuel flow.Manifold air pressure sensor (2) is mounted on the engine. The sensor measures the inlet manifold air pressure (absolute pressure) of the engine. The ECM uses the information to calculate the engine load.Oxygen buffer (3) is mounted on the engine. The buffer provides an interface between oxygen sensor (4) and the ECM. The buffer controls the sensor heater and the supply of voltage to the sensor. The buffer also converts the sensor output current into a signal that is sent to the ECM. The ECM converts the duty cycle into a percent of oxygen.Oxygen sensor (4) is mounted in an adapter ring on the exhaust elbow. The sensor measures the percent of oxygen in the engine exhaust. The exhaust oxygen level is an indication of the exhaust emissions. The sensor has a heater that is used during calibration. Voltage is input to the sensor and a current signal is output by the sensor to the oxygen buffer.The ECM is programmed with a map of desired exhaust oxygen versus the inlet manifold air pressure. The map is used to adjust the percent of desired exhaust oxygen according to the calculated engine load.Inlet manifold temperature sensor (5) monitors the temperature of the air/fuel mixture after the aftercooler. The ECM compares information from the inlet manifold temperature sensor to a programmed map. The map is used to offset the percent of desired exhaust oxygen for various inlet manifold temperatures to maintain a constant level of NOx.For example, the desired exhaust oxygen can be increased by 0.016 percent for each 1 °C (1.8 °F) of temperature that is greater than 45 °C (113 °F). The desired exhaust oxygen can be decreased by 0.016 percent for each 1 °C (1.8 °F) of temperature less than 45 °C (113 °F). In either case, the maximum adjustment is approximately 0.7 percent.The ECM sends a command to actuator (6) to move fuel valve (7). The fuel valve is located between the gas pressure regulator outlet and the carburetor fuel inlet. The quantity of fuel that is delivered to the carburetor is determined by the position of the fuel valve. The actuator sends a signal to the ECM for the ECM to monitor the position of the actuator.The ECM monitors the electrical systems of each component. The ECM will generate a diagnostic code and a warning if there is a problem with an electrical circuit. The warning is indicated by an LED on the display of the ECM.The diagnostic code can be read on the ECM or with either of these electronic service tools: Cat ET (8) .The signal of the oxygen sensor duty cycle must be calibrated for the ECM to monitor the actual percent of oxygen in the exhaust. The Cat ET is used for calibration of the oxygen sensor. The desired percent of exhaust oxygen can be programmed with electronic service tool.The air/fuel ratio control is a closed loop system. The inlet manifold air pressure, the inlet manifold air temperature, and the exhaust oxygen are continuously monitored. The information is compared to the programmed map of desired oxygen versus inlet manifold air pressure. The map is offset by the map for the inlet manifold temperature. The flow of fuel is controlled to maintain the desired exhaust emissions. The system maintains a consistent level of NOx under various operating conditions.Generally, as the air/fuel mixture becomes more lean the exhaust emissions and temperatures are reduced. The fuel consumption can increase slightly.As the air/fuel mixture is rich, the exhaust emissions, temperatures, and power are increased. If the air/fuel mixture is too rich, detonation can occur.A change in the fuel energy content requires changes in the air/fuel mixture to maintain the desired exhaust oxygen. If the fuel energy content becomes greater, the air/fuel ratio control will move the fuel valve to maintain the desired exhaust emissions.


Parts connecting Mercury:

853658T02
 
853658T02 CONNECTING ROD ASSEMBLY
1075D73FY, 1075D73HY, 1090D73CD, 1115P73HY, 1115P73HY, 1125D73HY
Back to top