842756005 HOSE Mercury
1200D73ET, 1225P73ED, 1225P73HD, 1225P83ED, 1226P73ED, 1250P73ED, 1250P73HD, 1250P83ED, 1251P73ED, 192647GHD, 192847GHD
HOSE
Price: query
Rating:
Compatible models:
Mercury entire parts catalog list:
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
- BOTTOM COWL » 842756005
Information:
determine the cause of above normal coolant temperatures:
Check the coolant level in the cooling system. If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant causing damage to internal components within the water pump. Low coolant level is caused by leaks or incorrectly filling the expansion tank.
Check the mixture of antifreeze and water. The mixture should be approximately 50 percent water and 50 percent antifreeze with 3 to 6 percent coolant conditioner. If the coolant mixture is incorrect, drain the system. Put the correct mixture of water, antifreeze and coolant conditioner in the cooling system.
Check for air in the cooling system. Air can enter the cooling system in different ways. The most common causes of air in the cooling system are not filling the cooling system correctly and combustion gas leakage into the cooling system. Combustion gas can get into the system through inside cracks, a damaged cylinder head, or a damaged cylinder head gasket. Air in the cooling system causes a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant. The air bubbles cause damage to internal components within the water pump.
Check the sending unit. In some conditions, the temperature sensor in the engine sends signals to a sending unit. The sending unit converts these signals to an electrical impulse which is used by a mounted gauge. If the sending unit malfunctions, the gauge can show an incorrect reading. Also if the electric wire breaks or if the electric wire shorts out, the gauge can show an incorrect reading.
Check the radiator for a restriction to coolant flow. Check the radiator for debris, dirt, or deposits on the inside of the core. Debris, dirt, or deposits will restrict the flow of coolant through the radiator.
Check the filler cap. A pressure drop in the cooling system can cause the boiling point of the coolant to be lower. This can cause the cooling system to boil leading to cavitation (air bubbles in the system). Refer to Testing and Adjusting, "Cooling System - Test".
Check the cooling system hoses and clamps. Damaged hoses with leaks can normally be seen. Hoses that have no visual leaks can soften during operation. The soft areas of the hose can become kinked or crushed during operation. These areas of the hose can cause a restriction in the coolant flow. Hoses become soft and/or get cracks after a period of time. The inside of a hose can deteriorate, and the loose particles of the hose can cause a restriction of the coolant flow.
Check for a restriction in the air inlet system. A restriction of the air that is coming into the engine can cause high cylinder temperatures. High cylinder temperatures require higher than normal temperatures in the cooling system.
Check for a restriction in the exhaust system. A restriction of the air that is coming out of the engine can cause high cylinder temperatures.
Make a visual inspection of the exhaust system.
Check for damage to exhaust piping. Check for damage to the exhaust elbow. If no damage is found, check the exhaust system for a restriction.
Check the water temperature regulator. A water temperature regulator that does not open, or a water temperature regulator that only opens part of the way can cause overheating. Refer to Testing and Adjusting, "Water Temperature Regulator - Test".
Check the jacket water pump. A jacket water pump with a damaged impeller does not pump enough coolant for correct engine cooling. Remove the water pump and check for damage to the impeller.
Check the air flow through the engine compartment. Not enough air flow over the engine can affect the engine operating temperature.
Consider high outside temperatures. When outside temperatures are too high for the rating of the cooling system, there is not enough of a temperature difference between the outside air and coolant temperatures. The maximum temperature of the ambient air that enters the engine should not exceed 50 °C (120 °F).
The engine may be running in the lug condition. When the load that is applied to the engine is too large, the engine will run in the lug condition. When the engine is running in the lug condition, engine rpm does not increase with an increase of fuel. This lower engine rpm causes a reduction in coolant flow through the system. This combination of less air and less coolant flow during high input of fuel will cause above normal heating.
Timing of the engine which is incorrect may also cause overheating of the engine. Late timing creates more heat in the engine. Early timing creates less heat in the engine. Note: If the timing of the engine is incorrect, the exhaust valves may be burned and damage to the exhaust manifold may occur.
Check the coolant level in the cooling system. If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant causing damage to internal components within the water pump. Low coolant level is caused by leaks or incorrectly filling the expansion tank.
Check the mixture of antifreeze and water. The mixture should be approximately 50 percent water and 50 percent antifreeze with 3 to 6 percent coolant conditioner. If the coolant mixture is incorrect, drain the system. Put the correct mixture of water, antifreeze and coolant conditioner in the cooling system.
Check for air in the cooling system. Air can enter the cooling system in different ways. The most common causes of air in the cooling system are not filling the cooling system correctly and combustion gas leakage into the cooling system. Combustion gas can get into the system through inside cracks, a damaged cylinder head, or a damaged cylinder head gasket. Air in the cooling system causes a reduction in coolant flow and bubbles in the coolant. Air bubbles will keep coolant away from the engine parts, which will prevent the transfer of heat to the coolant. The air bubbles cause damage to internal components within the water pump.
Check the sending unit. In some conditions, the temperature sensor in the engine sends signals to a sending unit. The sending unit converts these signals to an electrical impulse which is used by a mounted gauge. If the sending unit malfunctions, the gauge can show an incorrect reading. Also if the electric wire breaks or if the electric wire shorts out, the gauge can show an incorrect reading.
Check the radiator for a restriction to coolant flow. Check the radiator for debris, dirt, or deposits on the inside of the core. Debris, dirt, or deposits will restrict the flow of coolant through the radiator.
Check the filler cap. A pressure drop in the cooling system can cause the boiling point of the coolant to be lower. This can cause the cooling system to boil leading to cavitation (air bubbles in the system). Refer to Testing and Adjusting, "Cooling System - Test".
Check the cooling system hoses and clamps. Damaged hoses with leaks can normally be seen. Hoses that have no visual leaks can soften during operation. The soft areas of the hose can become kinked or crushed during operation. These areas of the hose can cause a restriction in the coolant flow. Hoses become soft and/or get cracks after a period of time. The inside of a hose can deteriorate, and the loose particles of the hose can cause a restriction of the coolant flow.
Check for a restriction in the air inlet system. A restriction of the air that is coming into the engine can cause high cylinder temperatures. High cylinder temperatures require higher than normal temperatures in the cooling system.
Check for a restriction in the exhaust system. A restriction of the air that is coming out of the engine can cause high cylinder temperatures.
Make a visual inspection of the exhaust system.
Check for damage to exhaust piping. Check for damage to the exhaust elbow. If no damage is found, check the exhaust system for a restriction.
Check the water temperature regulator. A water temperature regulator that does not open, or a water temperature regulator that only opens part of the way can cause overheating. Refer to Testing and Adjusting, "Water Temperature Regulator - Test".
Check the jacket water pump. A jacket water pump with a damaged impeller does not pump enough coolant for correct engine cooling. Remove the water pump and check for damage to the impeller.
Check the air flow through the engine compartment. Not enough air flow over the engine can affect the engine operating temperature.
Consider high outside temperatures. When outside temperatures are too high for the rating of the cooling system, there is not enough of a temperature difference between the outside air and coolant temperatures. The maximum temperature of the ambient air that enters the engine should not exceed 50 °C (120 °F).
The engine may be running in the lug condition. When the load that is applied to the engine is too large, the engine will run in the lug condition. When the engine is running in the lug condition, engine rpm does not increase with an increase of fuel. This lower engine rpm causes a reduction in coolant flow through the system. This combination of less air and less coolant flow during high input of fuel will cause above normal heating.
Timing of the engine which is incorrect may also cause overheating of the engine. Late timing creates more heat in the engine. Early timing creates less heat in the engine. Note: If the timing of the engine is incorrect, the exhaust valves may be burned and damage to the exhaust manifold may occur.
Parts hose Mercury:
99439
99439 HOSE, (114.00 Inches)
1115473WD, 11354120D, 1135412GD, 1135412MD, 1135412SD, 1135412VD, 1135412WD, 1135473UD, 1135473VD, 1135726, 1150413SD, 1150413VD, 1150413WD, 1150453BD, 1150453GD, 1150453JD, 1150625, 1150628, 1175412GD, 1175413LD, 1175413MD, 1175626, 1200412GD, 12004
41729A 3
41729A 3 HOSE EXTENSION KIT
111047JHD, 1115473WD, 1135412SD, 1135412VD, 1135412WD, 1135473YD, 1135D73CD, 1135D73FT, 1150413CD, 1150413FY, 1150413HF, 1150413HY, 1150413SD, 1150413VD, 1150413WD, 1150413ZD, 1150423FG, 1150423FY, 1150423HF, 1150423HG, 1150423HY, 1150424FY, 1150424H
856763 1
856763 1 HOSE ASSEMBLY
1200473UD, 1200473VD, 1200473WD, 1200473YD, 1200D73AD, 1200D73CD, 1200D73ET, 1200D73HT, 1200E73EY, 1200E73HY, 1225E73AD, 1225P73DD, 1225P73ED, 1225P73HD, 1225P83ED, 1226P73ED, 1250P73ED, 1250P73HD, 1250P83ED, 1251P73ED, 192647GHD, 192847GHD
875283
875283 HOSE, (2.00 Inches)
111047JHD, 1115473WD, 1135473YD, 1135D73CD, 1135D73FT, 1150413CD, 1150413FY, 1150413HF, 1150413HY, 1150413ZD, 1150423FG, 1150423FY, 1150423HF, 1150423HG, 1150423HY, 1150424FY, 1150424HY, 1150P73HY, 1175P73HY, 1200413FY, 1200413HY, 1200423FG, 1200423F
825191A03
825191A03 HOSE KIT, Rigging
1135412WD, 1135V13ED, 1135V13FB, 1135V13HB, 1200D73CD, 1200D73ET, 1200D73HT, 1200E73EY, 1200E73HY, 1200V13ED, 1200V13ER, 1200V13FB, 1200V13HB, 1200V23ED, 1200V23ER, 1225E73AD, 1225V13EB, 1225V13EF, 1225V23ED, 1225V33EB, 1250V23EF, 1250V34EB, 1251V13E
892830053
892830053 HOSE, (24.00 Inches Braided) (CUT TO 24 INCHES)
111047JHD, 1135473YD, 1135D73CD, 1135D73FT, 1150413CD, 1150413ZD, 1150P73HY, 1175P73HY, 1200453CD, 1200453EY, 1200453HY, 1200D73CD, 1200D73ET, 1200D73HT, 1200E73EY, 1200E73HY, 1225413EY, 1225423EY, 1225424EY, 1225E73AD, 1225P73DD, 1225P73ED, 1225P73H
850719
850719 HOSE, (100.00 Feet Bulk)
111047JHD, 1150413FY, 1150413HF, 1150413HY, 1150423FG, 1150423FY, 1150423HF, 1150423HG, 1150423HY, 1150424FY, 1150424HY, 1150P73HY, 1175P73HY, 1200413FY, 1200413HY, 1200423FG, 1200423FY, 1200423HG, 1200423HY, 1200424FY, 1200424HY, 1200453EY, 1200453H
885553
885553 HOSE
1200D73AD, 1200D73CD, 1200D73ET, 1200D73HT, 1200E73EY, 1200E73HY, 1225E73AD, 1225P73DD, 1225P73ED, 1225P73HD, 1225P83ED, 1226P73ED, 1250P73ED, 1250P73HD, 1250P83ED, 1251P73ED, 192647GHD, 192847GHD