62842 Mercury SCREW, COIL COVER TO COIL BRACKET


62842 SCREW, COIL COVER TO COIL BRACKET Mercury 1300623, 1402202 SCREW
62842 SCREW, COIL COVER TO COIL BRACKET Mercury
Rating:
88

Buy SCREW, COIL COVER TO COIL BRACKET 62842 Mercury genuine, new aftermarket parts with delivery
Number on catalog scheme: 27
 

Compatible models:

1300623   1402202   Mercury

Mercury entire parts catalog list:

1300623 1983,1984,1985,1986,1987
1402202 1972,1973,1974

Information:


Illustration 1 g00290888
Cooling system for a warm engine (1) Cylinder head. (2) Water temperature regulator. (3) Outlet hose. (4) Vent line. (5) Vent tube. (6) Shunt line. (7) Elbow. (8) Water pump. (9) Cylinder block. (10) Oil cooler. (11) Inlet hose. (12) Radiator.In operation, the water pump (8) circulates the coolant from the radiator (12) to the oil cooler (10) .The coolant from the oil cooler (10) goes into the cylinder block (9) through a bonnet and an elbow. The coolant goes around the cylinder liners, through the water directors and into the cylinder head.The water directors send the flow of coolant around the area of the valves and the area of the exhaust ports in the cylinder head. The coolant then goes to the front of the cylinder head. At this point, water temperature regulator (2) controls the coolant flow into the top of the radiator.The water temperature regulator (2) is closed when the engine is cold. The coolant flows through the regulator housing and elbow (7) back to water pump (8) .If the coolant is at normal operating temperature, the water temperature regulator (2) opens and the coolant flows to the radiator (12) through the outlet hose (3). The coolant temperature lowers as the coolant moves through the radiator. When the coolant gets to the bottom of the radiator, the coolant goes through the inlet hose (11) and into the water pump (8) .Note: The water temperature regulator (2) is an important part of the cooling system. The water temperature regulator (2) divides the coolant flow between the radiator (12) and the bypass elbow (7). If the water temperature regulator is not installed in the system, there is no mechanical control. If a higher volume of coolant goes through the radiator, the engine will not reach normal operating temperatures. This can occur during cold weather.Shunt line (6) gives several advantages to the cooling system. The shunt line gives a positive coolant pressure at the water pump inlet that prevents pump cavitation. A small flow of coolant constantly goes through shunt line (6) to the inlet of water pump (8). This causes a small amount of coolant to move constantly through the vent tube (5). The flow through the vent tube is small and the volume of the upper compartment is large. Air in the coolant is removed as the coolant goes into the upper compartment.The vent line is used to release the pressure in the cooling system as the cooling system heats up to operating temperature. This will purge any air out of the system.The OEM may supply a surge tank. The tank can be mounted on the radiator or mounted on a remote location. The coolant that expands past the radiator cap is retained in the surge tank. The coolant contracts as the temperature drops and the coolant is drawn back into the radiator.Coolant For Air Compressor
Illustration 2 g00290889
Coolant flow in air compressor (1) Air compressor. (2) Outlet hose. (3) Inlet hose.The coolant for the air compressor (1) comes from the cylinder block through inlet hose (3) and into the air compressor. The coolant goes from the air compressor through outlet hose (2) back into the front of the cylinder head.Coolant Conditioner (An Attachment)
Illustration 3 g00290890
Schematic of cooling system with coolant conditioner (typical example) (1) Temperature regulator housing. (2) Coolant outlet to radiator. (3) Vent line with orifice at cylinder head. (4) Radiator. (5) Shunt line. (6) Bypass. (7) Water pump. (8) Coolant conditioner element. (9) Engine oil cooler. (10) Coolant temperature sensor. (11) Coolant inlet from radiator.Some conditions of operation can cause pitting on the outer surface of the cylinder liners and on the cylinder block surface next to the liners. This pitting is caused by corrosion or by cavitation erosion. A corrosion inhibitor is a chemical that provides a reduction in pitting. The addition of a corrosion inhibitor can keep this type of damage to a minimum.Coolant conditioner element (8) is a spin-on element that is similar to a fuel filter and to oil filter elements. The coolant conditioner element attaches to coolant conditioner base that is mounted on the engine or mounted on a remote location. Coolant flows through lines from the water pump to the base and back to the air compressor (accessories). Coolant constantly flows through the coolant conditioner element.The element has a specific amount of inhibitor for acceptable cooling system protection. As the coolant flows through the element, the corrosion inhibitor goes into the solution. The corrosion inhibitor is a dry solution, so the inhibitor dissolves. The corrosion inhibitor then mixes to the correct concentration. Two basic types of elements are used for the cooling system. The two elements are the precharge elements and the maintenance elements. Each type of element has a specific use. The elements must be used correctly in order to get the necessary concentration for cooling system protection. The elements also contain a filter. The precharge element contains more than the normal amount of inhibitor. The precharge element is used when a system is first filled with new coolant. This element must add enough inhibitor in order to bring the complete cooling system up to the correct concentration.The maintenance elements have a normal amount of inhibitor. The maintenance elements are installed at the first change interval. A sufficient amount of inhibitor is provided by the maintenance elements in order to maintain the corrosion protection at an acceptable level. After the first change interval, only maintenance elements are installed. In order to provide the cooling system with protection, maintenance elements are installed at specific intervals.


Parts screw Mercury:

25764
 
25764 SCREW
1003203, 1004200, 1005200, 1007208, 1007209, 1010208, 1035204, 1035207, 1040100, 1040102, 1040200, 1040206, 1040208, 10402139D, 1045205, 1075101, 1075202, 1075204, 1090520, 1090524, 1110100, 1110102, 1110204, 1115520, 1115523, 1115525, 1140520, 11406
20646
 
20646 SCREW, REAR SHIELD TO TOP COWL (5/8")
1007208, 1007209, 1010208, 1020208, 1035204, 1040200, 1040208, 1060504, 1075101, 1075202, 1075204, 1075524, 1080500, 1080508, 1110100, 1110102, 1110204, 1200203, 1225620, 1300623, 1400100, 1402202, 1402205, 1500100, 1850506
31830
 
31830 SCREW, RIDE-GUIDE KIT TO STEERING ARM (1 3/4")
1035204, 1045217, 1050200, 1060504, 1090524, 1115100, 1115525, 1135100, 1150625, 1150628, 1200628, 1250422GD, 1300623, 1400100, 1402202, 1500100, 1500101, 1650100, 1650502, 1650503, 1800100
30225
 
30225 SCREW, UPPER END CAP MOUNTING (1")
1080508, 1115100, 1115473WD, 1115503, 1115525, 1135100, 1135473YD, 1150413WD, 1150503, 1150625, 1400100, 1402202, 1402205, 1650100, 1650502, 1800100, 1850503, 1850506
49988
 
49988 SCREW, UPPER MOUNT COVER - REAR (1 3/4")
1400100, 1402202, 1402205, 1500100, 1500101, 1500205, 1500206, 1650502, 1700507
61802
 
61802 SCREW, COVER TO BOTTOM COWL (7/8")
1018200, 1020202, 1020208, 1025200, 1035204, 1035207, 1040200, 1040208, 1200203, 1402202, 1402205
57583
 
57583 SCREW, (#8-32 x .375), REEDS TO REED BLOCK
1070312BC, 1070717, 10754120D, 1135412GD, 1135726, 1150413SD, 1150413VD, 1150413WD, 1150453BD, 1150453GD, 1150453JD, 1150625, 1150628, 1175412GD, 1175413LD, 1175413MD, 1175626, 1200413GD, 1200628, 1220727, 1225620, 1300623
54493
Back to top