16924 SPRING Mercury
1015203FL, 1015203YL, 1025207FL, 1025207FM, 1025217FL, 1025217FM, 1030201FL, 1030201YL, 1030211FL, 1030271HL, 1030302FL, 1030312FL, 1030A01FL, 1030A11FL, 1031207ZF, 1B04201FB, 1F04201WB
SPRING
Price: query
Rating:
Compatible models:
Mercury entire parts catalog list:
1015203YL 2001,2002,2003,2004
- REMOTE CONTROL » 16924
1025207FM 2006
1025217FL 2006
1025217FM 2006,2010
1030201FL 2006
1030201YL 2001,2002,2003,2004
1030211FL 2006
1030271HL 2006
1030302FL 2006
1030312FL 2006
1030A01FL 2006
1030A11FL 2006
1031207ZF 2002
1B04201FB 2006
- REMOTE CONTROL 4000 SIDE MOUNT » 16924
- REMOTE CONTROL 4000 SIDE MOUNT » 16924
- REMOTE CONTROL » 16924
Information:
System Operation
Engine Governor
The ECM governs the engine. The ECM determines the timing, the injection pressure, and the amount of fuel that is delivered to each cylinder. These factors are based on the actual conditions and on the desired conditions at any given time during starting and operation.The ECM uses the throttle position sensor to determine the desired engine speed. The ECM compares the desired engine speed to the actual engine speed. The actual engine speed is determined through interpretation of the signals that are received by the ECM from the engine speed/timing sensors. If the desired engine speed is greater than the actual engine speed, the ECM requests that more fuel is injected to increase engine speed.Timing Considerations
Once the ECM has determined the amount of fuel that is required, the ECM must determine the timing of the fuel injection.The ECM adjusts timing for optimum engine performance and for the fuel economy. Actual timing and desired timing cannot be viewed with the electronic service tool. The ECM determines the location of top center of the number one cylinder from the signals that are provided by the engine speed/timing sensors. The ECM determines when injection should occur relative to the top center. The ECM then provides the signal to the injector at the desired time.Fuel Injection
The ECM sends high-voltage signals to the injector solenoids to energize the solenoids. By controlling the timing and the duration of the high-voltage signals, the ECM can control the following aspects of injection:
Injection timing
Fuel deliveryThe flash file inside the ECM establishes certain limits on the amount of fuel that can be injected. The "FRC Fuel Limit" is a limit that is based on the intake manifold pressure. The "FRC Fuel Limit" is used to control the air/fuel ratio for control of emissions. When the ECM senses a higher intake manifold pressure, the ECM increases the "FRC Fuel Limit". A higher intake manifold pressure indicates that there is more air in the cylinder. When the ECM increases the "FRC Fuel Limit", the ECM changes the control signal to the injector. The signal will allow more fuel into the cylinder.The "Rated Fuel Limit" is a limit that is based on the power rating of the engine and on the engine rpm. The "Rated Fuel Limit" is like the rack stops and the torque spring on a mechanically governed engine. The "Rated Fuel Limit" provides the power curves and the torque curves for a specific engine family and a specific engine rating. All these limits are determined at the factory. These limits cannot be changed.Other ECM Functions for Performance
The ECM may also provide enhanced control of the engine for functions such as controlling the cooling fan. Refer to Troubleshooting, "Configuration Parameters" for supplemental information about the systems that can be monitored by the ECM.Programmable Parameters
Certain parameters that affect engine operation may be changed with the electronic service tool. The parameters are stored in the ECM, and the parameters are protected from unauthorized changes by passwords. These parameters are either system configuration parameters or customer parameters.System configuration parameters are set at the factory. System configuration parameters affect emissions or power ratings within an engine family. Factory passwords must be obtained and factory passwords must be used to change the system configuration parameters.Some of the parameters may affect engine operation in an unusual way. An operator might not expect this type of effect. Without adequate training, these parameters may lead to power complaints or performance complaints even though the engines performance is to the specification.Customer parameters are variable. Customer parameters can be used to affect the characteristics of the engine. Limits are set by the factory and by the monitoring system.Customer passwords may be required to change customer specified parameters.Refer to Troubleshooting, "Configuration Parameters" for additional information on this subject.Passwords
System configuration parameters are protected by factory passwords. Factory passwords are calculated on a computer system that is available only to Cat dealers. Since factory passwords contain alphabetic characters, only the electronic service tool may change system configuration parameters.Customer parameters can be protected by customer passwords. The customer passwords are programmed by the customer. Factory passwords can be used to change customer passwords if customer passwords are lost.Refer to Troubleshooting, "Customer Passwords" and Troubleshooting, "Factory Passwords" for additional information on this subject.
Engine Governor
The ECM governs the engine. The ECM determines the timing, the injection pressure, and the amount of fuel that is delivered to each cylinder. These factors are based on the actual conditions and on the desired conditions at any given time during starting and operation.The ECM uses the throttle position sensor to determine the desired engine speed. The ECM compares the desired engine speed to the actual engine speed. The actual engine speed is determined through interpretation of the signals that are received by the ECM from the engine speed/timing sensors. If the desired engine speed is greater than the actual engine speed, the ECM requests that more fuel is injected to increase engine speed.Timing Considerations
Once the ECM has determined the amount of fuel that is required, the ECM must determine the timing of the fuel injection.The ECM adjusts timing for optimum engine performance and for the fuel economy. Actual timing and desired timing cannot be viewed with the electronic service tool. The ECM determines the location of top center of the number one cylinder from the signals that are provided by the engine speed/timing sensors. The ECM determines when injection should occur relative to the top center. The ECM then provides the signal to the injector at the desired time.Fuel Injection
The ECM sends high-voltage signals to the injector solenoids to energize the solenoids. By controlling the timing and the duration of the high-voltage signals, the ECM can control the following aspects of injection:
Injection timing
Fuel deliveryThe flash file inside the ECM establishes certain limits on the amount of fuel that can be injected. The "FRC Fuel Limit" is a limit that is based on the intake manifold pressure. The "FRC Fuel Limit" is used to control the air/fuel ratio for control of emissions. When the ECM senses a higher intake manifold pressure, the ECM increases the "FRC Fuel Limit". A higher intake manifold pressure indicates that there is more air in the cylinder. When the ECM increases the "FRC Fuel Limit", the ECM changes the control signal to the injector. The signal will allow more fuel into the cylinder.The "Rated Fuel Limit" is a limit that is based on the power rating of the engine and on the engine rpm. The "Rated Fuel Limit" is like the rack stops and the torque spring on a mechanically governed engine. The "Rated Fuel Limit" provides the power curves and the torque curves for a specific engine family and a specific engine rating. All these limits are determined at the factory. These limits cannot be changed.Other ECM Functions for Performance
The ECM may also provide enhanced control of the engine for functions such as controlling the cooling fan. Refer to Troubleshooting, "Configuration Parameters" for supplemental information about the systems that can be monitored by the ECM.Programmable Parameters
Certain parameters that affect engine operation may be changed with the electronic service tool. The parameters are stored in the ECM, and the parameters are protected from unauthorized changes by passwords. These parameters are either system configuration parameters or customer parameters.System configuration parameters are set at the factory. System configuration parameters affect emissions or power ratings within an engine family. Factory passwords must be obtained and factory passwords must be used to change the system configuration parameters.Some of the parameters may affect engine operation in an unusual way. An operator might not expect this type of effect. Without adequate training, these parameters may lead to power complaints or performance complaints even though the engines performance is to the specification.Customer parameters are variable. Customer parameters can be used to affect the characteristics of the engine. Limits are set by the factory and by the monitoring system.Customer passwords may be required to change customer specified parameters.Refer to Troubleshooting, "Configuration Parameters" for additional information on this subject.Passwords
System configuration parameters are protected by factory passwords. Factory passwords are calculated on a computer system that is available only to Cat dealers. Since factory passwords contain alphabetic characters, only the electronic service tool may change system configuration parameters.Customer parameters can be protected by customer passwords. The customer passwords are programmed by the customer. Factory passwords can be used to change customer passwords if customer passwords are lost.Refer to Troubleshooting, "Customer Passwords" and Troubleshooting, "Factory Passwords" for additional information on this subject.
Parts spring Mercury:
16212
824994
824994 SPRING, Plate
1016207PD, 1016207RB, 1016207SB, 10202014D, 1020201DB, 1020201VB, 1031203PD, 1031203UB, 1031203UD, 1031207ZF, 1031312DB, 1040213YL, 1041312UB, 10432037D, 1043203DD, 1043203VD, 1043213DD, 1043302DD, 1043411DD, 1043412DB, 1043412DD, 1050302DB, 1050302F
F366300
F366300 SPRING-REVERSE LOCK
1031203PD, 1031203UB, 1031203UD, 1031207ZF, 1031312DB, 1040213YL, 1041312UB, 1B25203ZB, 1F25201UD, 1F25203VD
804366
803554
804366001
803746 1
803788