09118-08090 Suzuki BOLT


09118-08090 BOLT Suzuki DT25C, DT30C, DT30CRLJ, DT30CRSJ, DT30MCLJ, DT30MCSJ, DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR BOLT
09118-08090 BOLT Suzuki
Rating:
83

Buy BOLT 09118-08090 Suzuki genuine, new aftermarket parts with delivery

You can buy parts:

As an associate, we earn commssions on qualifying purchases through the links below
$6.44
 

30-03-2022

-: -
Suzuki Bolt M8x52 09118-08090 New Oem
New OEM Suzuki Bolt M8x52 || OEM Part Number: 09118-08090 || Item only fits specific models listed. The picture could be generic. || Message us with VIN/HULL for fast fitment verification.
Number on catalog scheme: 3
 

Suzuki entire parts catalog list:

DT25C 1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000
DT30C 1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000
DT30CRLJ 1988
DT30CRSJ 1988
DT30MCLJ 1988
DT30MCSJ 1988
DT8CENK 1989
DT8CENL 1990
DT8CLJ 1988
DT8CLK 1989
DT8CLL 1990
DT8CLM 1991
DT8CNK 1989
DT8CNL 1990
DT8CSJ 1988
DT8CSL 1990
DT8CSM 1991
DT8MCLN 1992
DT8MCLP 1993
DT8MCLS 1995
DT8MCLT 1996
DT8MCLV 1997
DT8MCSN 1992
DT8MCSP 1993
DT8MCSR 1994
DT8MCSS 1995
DT8MCST 1996
DT8MCSV 1997
DT8MSLR 1994
DT8SCK 1989
DT9.9 CELK 1989
DT9.9CELJ 1988
DT9.9CELL 1990
DT9.9CELM 1991
DT9.9CELN 1992
DT9.9CELP 1993
DT9.9CELR 1994
DT9.9CELS 1995
DT9.9CELT 1996
DT9.9CENK 1989
DT9.9CESJ 1988
DT9.9CESK 1989
DT9.9CESL 1990
DT9.9CESM 1991
DT9.9CESN 1992
DT9.9CESP 1993
DT9.9CESR 1994
DT9.9CESS 1995
DT9.9CEST 1996
DT9.9CNELP 1993
DT9.9CNELR 1994
DT9.9CNELS 1995
DT9.9CNELT 1996
DT9.9CNEXP 1993
DT9.9CNEXR 1994
DT9.9CNEXS 1995
DT9.9CNEXT 1996
DT9.9CNEXV 1997
DT9.9CNJ 1988
DT9.9CNK 1989
DT9.9CNL 1990
DT9.9CNLN 1992
DT9.9MCLJ 1988
DT9.9MCLK 1989
DT9.9MCLL 1990
DT9.9MCLM 1991
DT9.9MCLN 1992
DT9.9MCLP 1993
DT9.9MCLR 1994
DT9.9MCLS 1995
DT9.9MCLT 1996
DT9.9MCLV 1997
DT9.9MCNLR 1994
DT9.9MCNLT 1996
DT9.9MCNLV 1997
DT9.9MCSJ 1988
DT9.9MCSK 1989
DT9.9MCSL 1990
DT9.9MCSM 1991
DT9.9MCSN 1992
DT9.9MCSP 1993
DT9.9MCSR 1994
DT9.9MCSS 1995
DT9.9MCST 1996
DT9.9MCSV 1997

Information:

SUBJECT: EXCESSIVE WEAR IN THE 3524 ENGINES IN 797 OFF-HIGHWAY
TRUCKS
PROBLEM:
There have been several reports of dirt ingestion on 797 Trucks that is causing premature engine wear. Engine dirt ingestion can be a result of the following problems:
· Leaking air intake piping before or after the turbochargers
· Inadequate air filtration
· Poor maintenance of the air system
· Dirt entry during an engine repair that requires the engine to be opened up
SOLUTION:
The Wear Metal Limit Table for 797 Off-Highway Trucks is available to S∙O∙S Services lab personnel and Dealer Service Managers. This Wear Table was derived from 797 Trucks operating in North America. Please be aware that these Wear Tables do not reflect the wear level limits for engines using an Oil Renewal System (ORS). It is very important to trend fluid compartments during the complete life of the machine and not just the last one or two samples. Many sites look at either the last, or even the last few samples when looking for abnormal trends in wear elements. This method does not always tell the whole story. Critical changes in wear elements that occurred earlier in the engines life may be missed. Graphing and reviewing the complete S∙O∙S Oil Analysis History of an engine is the best method to trend changes that can lead to catastrophic failures that cause unscheduled downtime. When you graph the results of the S∙O∙S Oil Analysis for the complete life of the machine, you can tell if there is a steady trend upward, or if an increase in a wear element is just a one-time occurrence where someone was in the engine to do work. See the examples that follow:
EXAMPLE 1
Illustration 1 shows a graph of the results of the S∙O∙S Oil Analysis for the Front Engine in a 797 Truck that experienced severe dirt entry at about 500 engine hours. The dirt entry resulted in a significant iron increase and a much smaller aluminum increase. Aluminum can come from the piston skirt or it can be part of the dirt ingestion. Many soils contain significant amounts of aluminum as well as silicon. The front engine in this example experienced severe cylinder pack wear that resulted in high blow-by and high oil consumption.
ILLUSTRATION 1
Illustration 2 shows a graph of the results of the S∙O∙S Oil Analysis for the Rear Engine in the same 797 Truck. This engine had a more normal trend analysis. There was a slight increase in iron levels at 600 engine hours. However, this iron increase was caused by higher levels of soot in the oil and not caused by dirt entry.
ILLUSTRATION 2
EXAMPLE 2
Illustration 3 shows a graph of the results of the S∙O∙S Oil Analysis for the Front Engine in a 797 Truck that experienced moderate dirt entry at about 1500 engine hours. As seen in the previous example, the iron levels are increasing as the silicon level increases. There is also a slight increase in aluminum values. The iron increase at 600 hours was caused by high soot and not by dirt entry.
ILLUSTRATION 3
Illustration 4 shows a graph of the results of the S∙O∙S Oil Analysis for the Rear Engine in the same 797 Truck. The Rear Engine had a slight iron increase from 600 to 900 engine hours. This iron increase was again caused by soot and not caused by dirt entry. The silicon and aluminum trends for this engine are low and stable.
ILLUSTRATION 4
CONCLUSIONS:
In the previous examples, soot was mentioned as a cause for high iron wear. High soot can be caused by a number of factors including the following:
· Plugged air filter
· High restriction in the air system
· Operation at high altitude
· Retarded injection timing
· Failed or damaged turbochargers
Soot readings may also change depending on the operating conditions at the job site. Engines that go through many acceleration cycles may produce more soot than engines that operate on long steady hauls.
Soot is not listed on the Wear Tables. It is recommended that the soot be kept below 120 percent or you may experience accelerated engine wear. Follow the recommendations for oil condemning that are provided in "Optimizing Oil Change Intervals", PEDP8025. Cat oil or a premium grade API approved CH-4 or CI-4 oil should be used to maximize engine component life.
The Wear Tables do not show guidelines for sodium or potassium. Coolant leaks in the engine can generally be identified by signs of sodium and/or potassium in the oil sample depending upon the coolant being used. Each application is different and the type of leak will determine how quickly you will see traces in the oil. Internal coolant leaks, where a gasket failure allows coolant to directly enter the oil in the crankcase, will generally show higher levels than a leak entering the air system. It is important that you document the trend of your engine. Then, when you see a sudden change from the norm, you need to react.
On the 3524 Engine, it is recommended that once the sodium or potassium level reaches 15 to 20 PPM you should start looking for an internal coolant leak in the air system. Levels that are allowed to reach 200 to 300 PPM will affect bearing life. If you see smaller increases of sodium or potassium with corresponding increases in iron or chrome, you should start looking for a coolant leak in the aftercooler. Use a borescope to inspect the lower aftercooler housing to see if the aftercooler is leaking. If you see discoloration on the sides of the housing and coolant traces lying in the bottom, then the aftercooler is probably leaking. If you remove the top right hand rocker base bolt, you can insert a borescope through the hole for the bolt. This will allow you to look at the intake passage. You may find cracks in the intake passage of the cylinder head. Coolant discoloration and excessive cooling system pressure generally indicates a head gasket leak that is allowing combustion gasses to enter the cooling system. These are just a few examples of coolant leaks


Parts bolt Suzuki:

13613-98100
 
13613-98100 Bolt
DT15 MLE, DT15C, DT15ELD, DT15ELE, DT15ELF, DT15ELG, DT15ELH, DT15ELJ, DT15ESD, DT15ESE, DT15ESF, DT15ESG, DT15ESH, DT15ESJ, DT15MLD, DT15MLF, DT15MLG, DT15MLH, DT15MLJ, DT15MSD, DT15MSE, DT15MSF, DT15MSG, DT15MSH, DT15MSJ, DT16LT, DT16LT, DT16LT, DT
09111-10032
Bolt
09111-10032 Bolt
DF15, DF15, DF15, DF15S, DF25, DF25Q, DF25Q(QR), DF25T, DF30, DF30Q, DF30Q(QR), DF30T, DF8A, DF8AR, DF9.9, DF9.9A, DF9.9AR, DF9.9R, DF9.9RL, DF9.9S, DF9.9TH, DF9.9TH, DF99AR, DF99R, DF99TH, DT15C, DT20ELG, DT20ELH, DT20ELJ, DT20ESG, DT20ESH, DT20ESJ,
09100-10220
 
09100-10220 Bolt
DF25, DF25(R)S, DF25Q, DF25Q(QR), DF25R, DF25R, DF25T, DF30, DF30Q, DF30Q(QR), DF30T, DF40, DF40, DF40QH, DF40TL, DF50, DF50, DF50QH, DF50TL, DT25C, DT30C, DT30CRLJ, DT30CRSJ, DT30MCLJ, DT30MCSJ, DT55CLF, DT55CRLG, DT55CRLJ, DT55CRLK, DT55CRLL, DT55C
09100-06125
 
09100-06125 Bolt
DF15, DF15, DF15, DF15S, DF4, DF4, DF4, DF46, DF4L, DF6, DF6, DF6, DF6L, DF8A, DF8AR, DF9.9, DF9.9A, DF9.9AR, DF9.9R, DF9.9RL, DF9.9S, DF9.9TH, DF9.9TH, DF99AR, DF99R, DF99TH, DT15C, DT4, DT4LF, DT4LG, DT4LH, DT4SF, DT4SG, DT4SH, DT5Y, DT5Y, DT8CENK,
09103-06095
 
09103-06095 BOLT
DT2.2SV, DT25C, DT2LG, DT2LH, DT2LJ, DT2LK, DT2LL, DT2SG, DT2SH, DT2SJ, DT2SK, DT2SL, DT2SM, DT2SN, DT2SP, DT2SR, DT2SS, DT2ST, DT30C, DT30CRLJ, DT30CRSJ, DT30MCLJ, DT30MCSJ, DT35CRLH, DT35CRLJ, DT35CRLK, DT35CRSH, DT35CRSJ, DT35CRSK, DT35MCLH, DT35M
67701-94403
 
67701-94403 BOLT
DT25C, DT30C, DT35CRLH, DT35CRLJ, DT35CRLK, DT35CRSH, DT35CRSJ, DT35CRSK, DT35MCLH, DT35MCLJ, DT35MCLK, DT35MCSH, DT35MCSJ, DT35MCSK, DT35TCLH, DT35TCLJ, DT35TCLK, DT40C
09116-06127
BOLT (6X12)
09116-06127 BOLT (6X12)
DF100, DF100, DF100, DF100A, DF115, DF115, DF115, DF115A, DF115TL, DF140, DF140, DF140, DF140A, DF140T, DF140T, DF140Z, DF140Z, DF140Z, DF140Z, DF150, DF150, DF150, DF150TX, DF150ZX, DF175, DF175, DF175, DF175TX, DF175ZX, DF2.5, DF2.5, DF2.5, DF2.5s,
09118-06038
 
09118-06038 BOLT
DT15C, DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9
Back to top