12232-93001 Suzuki Crank Wheel


12232-93001 Crank Wheel Suzuki 20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, DT20ESB, DT20ESC, DT20ESN, DT20MLB, DT20MLC, DT20MLN, DT20MSB, DT20MSC, DT20MSN, DT25ELZ, DT25ESB, DT25ESC, DT25ESN, DT25EST, DT25ESX, DT25ESZ, DT25MLB, DT25MLC, DT25MLN, DT25MLT, DT25MLX, DT25M Crank
12232-93001 Crank Wheel Suzuki
Rating:
38

Buy Crank Wheel 12232-93001 Suzuki genuine, new aftermarket parts with delivery
Number on catalog scheme: 23
 

Suzuki entire parts catalog list:

20ELB 1977
20ELC 1978
20ELN 1979
25ELB 1977
25ELC 1978
25ELN 1979
25ELT 1980
25ELX 1981
DT20ESB 1977
DT20ESC 1978
DT20ESN 1979
DT20MLB 1977
DT20MLC 1978
DT20MLN 1979
DT20MSB 1977
DT20MSC 1978
DT20MSN 1979
DT25ELZ 1982
DT25ESB 1977
DT25ESC 1978
DT25ESN 1979
DT25EST 1980
DT25ESX 1981
DT25ESZ 1982
DT25MLB 1977
DT25MLC 1978
DT25MLN 1979
DT25MLT 1980
DT25MLX 1981
DT25MLZ 1982
DT25MSB 1977
DT25MSC 1978
DT25MSN 1979
DT25MST 1980
DT25MSX 1981
DT25MSZ 1982
DT28F 1979
DT28G 1980
DT28J 1981
DT28Z 1982

Information:

Starting Motor
Illustration 1 g01964824
Typical example
12 Volt 4 kW Starting Motor
(1) Terminal 30 for connection of the battery cable
(2) Terminal 50 for connection of ignition switch
(3) Terminal 31 for connection of the ground
Illustration 2 g01964833
Typical example
24 Volt 5.5 kW Starting Motor
(4) Terminal 30 for connection of the battery cable
(5) Integrated Magnetic Switch (IMS)
(6) Terminal 50 for connection of ignition switch
(7) Terminal 31 for connection of the ground
Illustration 3 g01964823
Typical example
24 Volt 8 kW Starting Motor
(8) Terminal 30 for connection of the battery cable
(9) Integrated Magnetic Switch (IMS)
(10) Terminal 50 for connection of ignition switch
(11) Terminal 31 for connection of the ground The starting motor turns the engine via a gear on the engine flywheel. The starting motor speed must be high enough in order to initiate a sustained operation of the fuel ignition in the cylinders.The starting motor consists of the main armature and a solenoid. The solenoid is a relay with two windings Pull-In (PI) and Hold-In (HI). Upon activation of ignition switch, both windings move the iron core by electromagnets. The linkage from the iron core acts to move the pinion toward the flywheel ring gear for engagement. Upon complete engagement, the solenoid completes the high current circuit that supplies electric power to the main armature in order to provide rotation. During cranking of the engine, only the Hold-In (HI) winding is active.The ignition switch is deactivated once the desired engine speed has been achieved. The circuit is disconnected. The armature will stop rotating. Return springs that are located on the shafts and the solenoid will disengage the pinion from flywheel ring gear back to the rest position.The starting motor has an overrunning clutch to prevent damage to the starting motor and mechanical transmissions as the engine speed increases.Certain higher powered starting motors are designed with an Integrated Magnetic Switch (IMS). The Integrated Magnetic Switch (IMS) is activated by the ignition switch. The solenoid circuit then engages the starting motor. The benefit of Integrated Magnetic Switch (IMS) is a lower current in the ignition circuit that will allow the engine ECM to control ignition without the use of a relay.Alternator
The electrical outputs of the alternator have the following characteristics:
Three-phase
Full-wave
RectifiedThe alternator is an electro-mechanical component. The alternator is driven by a belt from the crankshaft pulley. The alternator charges the storage battery during the engine operation.The alternator is cooled by an external fan which is mounted behind the pulley. The fan may be mounted internally. The fan forces air through the holes in the front of the alternator. The air exits through the holes in the back of the alternator.The alternator converts the mechanical energy and the magnetic field into alternating current and voltage. This conversion is done by rotating a direct current electromagnetic field on the inside of a three-phase stator. The electromagnetic field is generated by electrical current flowing through a rotor. The stator generates alternating current and voltage.The alternating current is changed to direct current by a three-phase, full-wave rectifier. Direct current flows to the output terminal of the alternator. The direct current is used for the charging process.A regulator is installed on the rear end of the alternator. Two brushes conduct current through two slip rings. The current then flows to the rotor field. A capacitor protects the rectifier from high voltages.The alternator is connected to the battery through the ignition switch. Therefore, alternator excitation occurs when the switch is in the ON position.


Back to top