13251-95210 Gasket, float chamber Suzuki
DT35CRLH, DT35CRLJ, DT35CRLK, DT35CRSH, DT35CRSJ, DT35CRSK, DT35ELT, DT35ELX, DT35ELZ, DT35EST, DT35ESX, DT35ESZ, DT35MCLH, DT35MCLJ, DT35MCLK, DT35MCSH, DT35MCSJ, DT35MCSK, DT35MLT, DT35MLX, DT35MLZ, DT35MST, DT35MSX, DT35MSZ, DT35TCLH, DT35TCLJ, DT
Gasket
Price: query
Rating:
Compatible models:
DT35CRLH
DT35CRLJ
DT35CRLK
DT35CRSH
DT35CRSJ
DT35CRSK
DT35ELT
DT35ELX
DT35ELZ
DT35EST
DT35ESX
DT35ESZ
DT35MCLH
DT35MCLJ
DT35MCLK
DT35MCSH
DT35MCSJ
DT35MCSK
DT35MLT
DT35MLX
DT35MLZ
DT35MST
DT35MSX
DT35MSZ
DT35TCLH
DT35TCLJ
DT35TCLK
DT40
DT40ELT
DT40ELX
DT40ELZ
DT40EST
DT40ESX
DT40ESZ
DT40MLT
DT40MLX
DT40MLZ
DT40MSX
DT40MSZ
DT50
DT50ELB
DT50ELC
DT50ELN
DT50ESB
DT50ESC
DT50ESN
DT50M
DT50MLC
DT50MLN
DT50MSC
DT50MSN
DT50W
DT60CLD
DT60CLE
DT65
DT65ELC
DT65ELN
DT65ESC
DT65ESN
DT85ELT
DT85TCLD
DT85TCLE
DT85TCLF
DT85TCLT
DT85TCLX
DT85TCLZ
DT85TELN
DT85TELT
Suzuki
Suzuki entire parts catalog list:
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- CARBURETOR » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- CARBURETOR » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- CARBURETOR (DT50 ELECTRIC START) » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- CARBURETOR » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- CARBURETOR » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- CARBURETOR » 13251-95210
- CARBURETOR » 13251-95210
- CARBURETOR (DT50M) » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
- Carburetor » 13251-95210
Information:
Illustration 1 g06484350
Typical example of the air inlet and exhaust system
(1) Aftercooler core
(2) Air filter
(3) Turbocharger
(4) Wastegate actuator
(5) Exhaust gas valve (NRS)
(6) Exhaust cooler (NRS)The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The air inlet and exhaust system consists of the following components:
Air cleaner
Exhaust cooler (NRS)
Exhaust gas valve (NRS)
Turbocharger
Aftercooler
Inlet manifold
Cylinder head, injectors, and glow plugs
Valves and valve system components
Piston and cylinder
Exhaust manifoldAir is drawn in through the air cleaner into the air inlet of the turbocharger by the turbocharger compressor wheel. The air is compressed to a pressure of about 150 kPa (22 psi) and heated to about 120° C (248° F) before the air is forced to the aftercooler. As the air flows through the aftercooler the temperature of the compressed air lowers to about 55° C (131° F). Cooling of the inlet air assists the combustion efficiency of the engine. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased power output
Reduced NOx emission
Reduced particulate emissionFrom the aftercooler, the air flows to the air inlet connection and then to the NOx Reduction System (NRS). A mixture of air and exhaust gas is then forced into the inlet manifold.Air flow from the inlet manifold to the cylinders is controlled by inlet valves. There are two inlet valves and two exhaust valves for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is forced into the cylinder. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustOn the compression stroke, the piston moves back up the cylinder and the inlet valves close. The cool compressed air is compressed further. This additional compression generates more heat.Note: If the cold starting system is operating, the glow plugs will also heat the air in the cylinder.Just before the piston reaches the top center (TC) position, the ECM operates the electronic unit injector. Fuel is injected into the cylinder. The air/fuel mixture ignites. The ignition of the gases initiates the power stroke. Both the inlet and the exhaust valves are closed and the expanding gases force the piston downward toward the bottom center (BC) position.From the BC position, the piston moves upward. This initiates the exhaust stroke. The exhaust valves open. The exhaust gases are forced through the open exhaust valves into the exhaust manifold.
Illustration 2 g06484373
Typical example
The NOx Reduction System (NRS) operates with the transfer of the hot exhaust gas from the exhaust manifold to the exhaust gas valve (NRS) (5).As the electronically controlled valve (5) starts to open the flow of cooled exhaust gas from the exhaust cooler (6) mixes with the air flow from the charge air aftercooler. The mixing of the cooled exhaust gas and the air flow from the charge air aftercooler reduces the oxygen content of the gas mixture. This results in a lower combustion temperature, so decreases the production of NOx.As the demand for more cooled exhaust gas increases the electronically controlled valve opens further. The further opening of the valve increases the flow of cooled exhaust gas from the exhaust cooler. As the demand for cooled exhaust gas decreases, the electronically controlled valve closes. This decreases the flow of cooled exhaust gas from the exhaust cooler.The hot exhaust gas is cooled in the exhaust cooler (6). The cooled exhaust gas passes through the exhaust cooler (6) to the inlet manifold.The electronically controlled exhaust gas valve (5) is controlled by the ECM.In some instances, the engine will need to use the electronically controlled exhaust gas valve (5) to generate the required flow of exhaust gas.Exhaust gases from the exhaust manifold enter the inlet of the turbocharger to turn the turbocharger turbine wheel. The turbine wheel is connected to a shaft that rotates. The exhaust gases pass from the turbocharger through the following components: exhaust outlet, and exhaust pipe.Turbocharger
Illustration 3 g00302786
Typical example of a cross section of a turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inletThe turbocharger is mounted on the outlet of the exhaust manifold. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel rotates, the compressor wheel is rotated. The rotation of the compressor wheel causes the intake air to be pressurized through the compressor housing (2) of the turbocharger.When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, air is compressed to a higher pressure and more air is forced into the cylinders. The increased flow of air into the cylinders allows the fuel to be burnt with greater efficiency. This produces more power.The shaft that connects the turbine to the compressor wheel rotates in bearings (4) and (6). The bearings require oil under pressure for lubrication and cooling. The oil that flows to the lubricating oil inlet port (5) passes through the center of the turbocharger which retains the bearings. The oil exits the turbocharger from the lubricating oil outlet port (10) and returns to the oil pan.Electronic Actuated Turbocharger Wastegate (EWG)
A wastegate is installed on the turbine housing of the turbocharger. The wastegate actuator is installed on the compressor housing of the turbocharger.The wastegate is a valve that allows exhaust gas to bypass the turbine wheel of the turbocharger. The position of the valve varies the amount of exhaust gas that flows into the turbine.The wastegate valve is connected to an actuating lever. The actuating lever is connected to an electronic actuated wastegate actuator.Inside the wastegate actuator is an electric
Parts gasket Suzuki:
09168-10004
09168-10004 Gasket, Drain Plug
20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, DT14C, DT14D, DT14F, DT16LB, DT16LC, DT16LN, DT16LT, DT16LT, DT16LT, DT16SB, DT16SC, DT16SN, DT16ST, DT16ST, DT16ST, DT20ESB, DT20ESC, DT20ESN, DT20MLB, DT20MLC, DT20MLN, DT20MSB, DT20MSC, DT20M
65862-93000
65862-93000 Gasket, Float Arm Holder
20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, DT14C, DT14D, DT16LB, DT16LC, DT16LN, DT16LT, DT16LT, DT16LT, DT16SB, DT16SC, DT16SN, DT16ST, DT16ST, DT16ST, DT20ESB, DT20ESC, DT20ESN, DT20MLB, DT20MLC, DT20MLN, DT20MSB, DT20MSC, DT20MSN, DT2
13392-58600
13392-58600 Gasket, needle valve
20ELB, 20ELC, 20ELN, 25ELT, 25ELX, 30ELE, 30ESE, 30MLE, DT115, DT140, DT150SSH, DT150SSJ, DT150SSK, DT150SSL, DT150SSM, DT150SSN, DT150STCLP, DT150STCLR, DT150STCLS, DT150STCLT, DT150TCLH, DT150TCLJ, DT150TCLK, DT150TCLL, DT150TCLM, DT150TCLN, DT150T
13853-95310
13853-95310 Gasket, silencer
DT50ECLE, DT50ELB, DT50ELC, DT50ELN, DT50ESB, DT50ESC, DT50ESN, DT50MCLE, DT50MLC, DT50MLN, DT50MSC, DT50MSN, DT60CLD, DT60CLE, DT65ELC, DT65ELN, DT65ESC, DT65ESN
17472-95310
17472-95310 Gasket, panel
DT50ECLE, DT50ELC, DT50ELN, DT50ESC, DT50ESN, DT50MCLE, DT50MLC, DT50MLN, DT50MSC, DT50MSN, DT55CLF, DT55CRLG, DT55CRLJ, DT55CRLK, DT55CRLL, DT55CRSG, DT55CRSH, DT55HTCLH, DT55HTCLJ, DT55HTCLK, DT55HTCLL, DT55TCLG, DT55TCLH, DT55TCLJ, DT55TCLK, DT55T
17472-95200
17472-95200 Gasket
DT35ELT, DT35ELX, DT35ELZ, DT35EST, DT35ESX, DT35ESZ, DT35MLT, DT35MLX, DT35MLZ, DT35MST, DT35MSX, DT35MSZ, DT40ELT, DT40ELX, DT40ELZ, DT40EST, DT40ESX, DT40ESZ, DT40MLT, DT40MLX, DT40MLZ, DT40MSX, DT40MSZ, DT50, DT50M, DT50W, DT60CLD, DT65, DT65, DT
09168-10022
09168-10022 Gasket, Drain Plug
25ELT, 25ELX, 30ELE, 30ESE, 30MLE, DF100, DF100, DF100, DF100A, DF115, DF115, DF115, DF115A, DF115TL, DF140, DF140, DF140, DF140A, DF140T, DF140T, DF140Z, DF140Z, DF140Z, DF140Z, DF15, DF15, DF15, DF15S, DF2.5, DF2.5, DF2.5, DF2.5s, DF25, DF25, DF25(
51211-95203