09181-17216 Suzuki PINION SHIM


09181-17216 PINION SHIM Suzuki DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM, PINION
09181-17216 PINION SHIM Suzuki
Rating:
38

Buy PINION SHIM 09181-17216 Suzuki genuine, new aftermarket parts with delivery
Number on catalog scheme: 15
 

Suzuki entire parts catalog list:

DT8CENK 1989
DT8CENL 1990
DT8CLJ 1988
DT8CLK 1989
DT8CLL 1990
DT8CLM 1991
DT8CNK 1989
DT8CNL 1990
DT8CSJ 1988
DT8CSL 1990
DT8CSM 1991
DT8MCLN 1992
DT8MCLP 1993
DT8MCLS 1995
DT8MCLT 1996
DT8MCLV 1997
DT8MCSN 1992
DT8MCSP 1993
DT8MCSR 1994
DT8MCSS 1995
DT8MCST 1996
DT8MCSV 1997
DT8MSLR 1994
DT8SCK 1989
DT9.9 CELK 1989
DT9.9CELJ 1988
DT9.9CELL 1990
DT9.9CELM 1991
DT9.9CELN 1992
DT9.9CELP 1993
DT9.9CELR 1994
DT9.9CELS 1995
DT9.9CELT 1996
DT9.9CENK 1989
DT9.9CESJ 1988
DT9.9CESK 1989
DT9.9CESL 1990
DT9.9CESM 1991
DT9.9CESN 1992
DT9.9CESP 1993
DT9.9CESR 1994
DT9.9CESS 1995
DT9.9CEST 1996
DT9.9CNELP 1993
DT9.9CNELR 1994
DT9.9CNELS 1995
DT9.9CNELT 1996
DT9.9CNEXP 1993
DT9.9CNEXR 1994
DT9.9CNEXS 1995
DT9.9CNEXT 1996
DT9.9CNEXV 1997
DT9.9CNJ 1988
DT9.9CNK 1989
DT9.9CNL 1990
DT9.9CNLN 1992
DT9.9MCLJ 1988
DT9.9MCLK 1989
DT9.9MCLL 1990
DT9.9MCLM 1991
DT9.9MCLN 1992
DT9.9MCLP 1993
DT9.9MCLR 1994
DT9.9MCLS 1995
DT9.9MCLT 1996
DT9.9MCLV 1997
DT9.9MCNLR 1994
DT9.9MCNLT 1996
DT9.9MCNLV 1997
DT9.9MCSJ 1988
DT9.9MCSK 1989
DT9.9MCSL 1990
DT9.9MCSM 1991
DT9.9MCSN 1992
DT9.9MCSP 1993
DT9.9MCSR 1994
DT9.9MCSS 1995
DT9.9MCST 1996
DT9.9MCSV 1997

Information:


Illustration 1 g00766579
Typical example
Grounding Stud To Battery Ground ("-")
Illustration 2 g00766660
Typical example
Alternate Grounding Stud To Battery Ground ("-")
The engine must have a wire ground to the battery. Ground wires or ground straps should be combined at ground studs that are only for ground use. All of the grounds should be tight and free of corrosion.All of the ground paths must be capable of carrying any likely current faults. An AWG #0 or larger wire is recommended for the grounding strap to the cylinder head.The engine alternator should be battery ground with a wire size that is capable of managing the full charging current of the alternator.
This engine may be equipped with a 12 volt starting system or a 24 volt starting system. Only equal voltage for boost starting should be used. The use of a higher voltage will damage the electrical system.The Electronic Control Module (ECM) must be disconnected at the "J1/P1" and "J2/P2" locations before welding on the vehicle.
The engine has several input components which are electronic. These components require an operating voltage. Unlike many electronic systems of the past, this engine is tolerant to common external sources of electrical noise. Buzzers that use electrical energy can cause disruptions in the power supply. If buzzers are used anywhere on the machine, the engine electronics should be powered directly from the battery system through a dedicated relay.Engine Electrical System
The electrical system has the following separate circuits:
Charging
Starting (If equipped)
Low amperage accessoriesSome of the electrical system components are used in more than one circuit. The following components are common in more than one circuit:
Battery or batteries
Circuit breakers
Battery cables
AmmeterThe charging circuit is in operation when the engine is running. An alternator makes electricity for the charging circuit. A voltage regulator in the circuit controls the electrical output in order to keep the battery at full charge.The starting circuit is activated only when the start switch is activated.The low amperage accessory circuit and the charging circuit are connected through the ammeter. The starting circuit is not connected through the ammeter.Charging System Components
Alternator
The alternator is driven by a belt from the crankshaft pulley. This alternator is a three-phase, self-rectifying charging unit, and the regulator is part of the alternator. The alternator design has no need for slip rings and the only part that has movement is the rotor assembly. All conductors that carry current are stationary. The following conductors are in the circuit:
Field winding
Stator windings
Six rectifying diodes
Regulator circuit componentsThe rotor assembly has many magnetic poles that look like fingers with air space between each of the opposite poles. The poles have residual magnetism. The residual magnetism produces a small magnetic field between the poles. As the rotor assembly begins to turn between the field winding and the stator windings, a small amount of alternating current (AC) is produced. The AC current is produced in the stator windings from the small magnetic field. The AC current is changed to direct current (DC) when the AC current passes through the diodes of the rectifier bridge. The current is used for the following applications:
Charging the battery
Supplying the low amperage accessory circuit
Strengthening the magnetic fieldThe first two applications use the majority of the current. As the DC current increases through the field windings, the strength of the magnetic field is increased. As the magnetic field becomes stronger, more AC current is produced in the stator windings. The increased speed of the rotor assembly also increases the current and voltage output of the alternator. The voltage regulator is a solid-state electronic switch. The voltage regulator senses the voltage in the system. The voltage regulator switches ON and OFF many times per second in order to control the field current for the alternator. The alternator uses the field current in order to generate the required voltage output.
Never operate the alternator without the battery in the circuit. Making or breaking an alternator connection with heavy load on the circuit can cause damage to the regulator.
Illustration 3 g01324275
Typical alternator components
(1) Regulator
(2) Roller bearing
(3) Stator winding
(4) Ball bearing
(5) Rectifier bridge
(6) Field winding
(7) Rotor assembly
(8) Fan Starting System Components
Starting Solenoid
Illustration 4 g00317613
Typical starting solenoid
Illustration 5 g01324034
Typical starting motor components
(9) Field
(10) Solenoid
(11) Clutch
(12) Pinion
(13) Commutator
(14) Brush assembly
(15) Armature The starting solenoid (10) is an electromagnetic switch that performs the following basic operations:
The starting solenoid (10) closes the high current starting motor circuit with a low current start switch circuit.
The starting solenoid (10) engages the pinion for the starting motor (12) with the ri


Parts pinion Suzuki:

31320-92D10
 
31320-92D10 PINION ASSEMBLY
DT15C, DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9
31312-92D10
 
31312-92D10 PINION STOPPER SET
DT15C, DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9
57311-92D03
 
57311-92D03 PINION GEAR
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
09263-17040
 
09263-17040 PINION BEARING
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
09181-17214
 
09181-17214 PINION SHIM
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
09181-17215
 
09181-17215 PINION SHIM
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
09181-17218
 
09181-17218 PINION SHIM
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
09181-17220
 
09181-17220 PINION SHIM
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
Back to top