09202-04018 Suzuki SHIFTER PIN


09202-04018 SHIFTER PIN Suzuki DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM, SHIFTER
09202-04018 SHIFTER PIN Suzuki
Rating:
24

Buy SHIFTER PIN 09202-04018 Suzuki genuine, new aftermarket parts with delivery
Number on catalog scheme: 22
 

Suzuki entire parts catalog list:

DT8CENK 1989
DT8CENL 1990
DT8CLJ 1988
DT8CLK 1989
DT8CLL 1990
DT8CLM 1991
DT8CNK 1989
DT8CNL 1990
DT8CSJ 1988
DT8CSL 1990
DT8CSM 1991
DT8MCLN 1992
DT8MCLP 1993
DT8MCLS 1995
DT8MCLT 1996
DT8MCLV 1997
DT8MCSN 1992
DT8MCSP 1993
DT8MCSR 1994
DT8MCSS 1995
DT8MCST 1996
DT8MCSV 1997
DT8MSLR 1994
DT8SCK 1989
DT9.9 CELK 1989
DT9.9CELJ 1988
DT9.9CELL 1990
DT9.9CELM 1991
DT9.9CELN 1992
DT9.9CELP 1993
DT9.9CELR 1994
DT9.9CELS 1995
DT9.9CELT 1996
DT9.9CENK 1989
DT9.9CESJ 1988
DT9.9CESK 1989
DT9.9CESL 1990
DT9.9CESM 1991
DT9.9CESN 1992
DT9.9CESP 1993
DT9.9CESR 1994
DT9.9CESS 1995
DT9.9CEST 1996
DT9.9CNELP 1993
DT9.9CNELR 1994
DT9.9CNELS 1995
DT9.9CNELT 1996
DT9.9CNEXP 1993
DT9.9CNEXR 1994
DT9.9CNEXS 1995
DT9.9CNEXT 1996
DT9.9CNEXV 1997
DT9.9CNJ 1988
DT9.9CNK 1989
DT9.9CNL 1990
DT9.9CNLN 1992
DT9.9MCLJ 1988
DT9.9MCLK 1989
DT9.9MCLL 1990
DT9.9MCLM 1991
DT9.9MCLN 1992
DT9.9MCLP 1993
DT9.9MCLR 1994
DT9.9MCLS 1995
DT9.9MCLT 1996
DT9.9MCLV 1997
DT9.9MCNLR 1994
DT9.9MCNLT 1996
DT9.9MCNLV 1997
DT9.9MCSJ 1988
DT9.9MCSK 1989
DT9.9MCSL 1990
DT9.9MCSM 1991
DT9.9MCSN 1992
DT9.9MCSP 1993
DT9.9MCSR 1994
DT9.9MCSS 1995
DT9.9MCST 1996
DT9.9MCSV 1997

Information:


Illustration 1 g01021887
Typical example
(1) Brake housing assembly
(2) Bolts
(3) Slave piston
(4) Solenoid valve
(5) Exhaust valve bridges
(6) Stud, spacer and nut The compression brake consists of three identical housing assemblies (1). A brake housing is installed in each of the valve mechanism compartments. The brake is located above the rocker arms and the rocker arm shaft. Each housing assembly is positioned over two cylinders. The housing is mounted to the support for the rocker arm shaft with bolts (2). The housing is supported on the cylinder head with one stud, one spacer, and one nut (6). The exhaust rocker arm is used to transmit force from slave piston (3) to the exhaust valve. A lead wire carries the signal of the compression brake to solenoid valve (4). Each lead wire activates the compression brake on two cylinders of the engine.Note: Only the valve mechanism that is for the exhaust is used in the operation of the compression brake.Note: The slave piston pushes on the rocker arm for the exhaust valves. The rocker arm depresses BOTH exhaust valves of each cylinder during the operation of the compression brake.The control circuit for the compression brake provides progressive braking capability. The control circuit for the compression brake permits the operation of one, two, or all three of the compression brakes. Therefore, the compression brake can be activated on two cylinders, four cylinders, or six cylinders of the engine.Compression Brake Operation
Illustration 2 g01023115
Master-slave circuit schematic
(1) Ground wire
(2) Solenoid valve
(3) Lead wire from the ECM
(4) Lead wire to the sensor for the ECM
(5) Spring
(6) Control valve
(7) High pressure oil passage
(8) Slave piston adjustment screw
(9) Slave piston
(10) Master piston
(11) Oil passage in the rocker arm shaft
(12) Engine oil pump
(13) Spring
(14) Rocker arm for the electronic unit injector
(15) Engine oil pan
(16) Oil drain passage
(17) Low pressure oil passage
(18) Ball check valve
(19) Exhaust valve bridge
(20) Exhaust valves
(21) Rocker arm for the exhaust valve
(22) Camshaft The compression brake operates on engine oil. The engine oil is supplied around the bolts through the rocker arm shafts. Solenoid valve (2) controls the oil flow in the compression brake housing assembly.The solenoid is activated by a signal from the ECM. Solenoid valve (2) moves down when the compression brake is activated. Solenoid valve (2) closes oil drain passage (16) to engine oil pan (15). Solenoid valve (2) also opens low pressure oil passage (17) to control valve (6). As low pressure oil passage (17) is filled with engine oil, the control valve is pushed up in the chamber against the force of spring (5). In the up position, a groove in control valve (6) is in alignment with high pressure oil passage (7) that supplies slave piston (9) and master piston (10). The engine oil pressure will now lift ball check valve (18). High pressure oil passage (7) is filled with the engine oil from passage (17). The chambers behind the slave piston and the master piston are also filled. This pressure moves the master piston downward until contact is made with electronic unit injector rocker arm (14). Ball check valve (18) is seated as the upward motion is initiated on the master piston. Ball check valve (18) is closed by an increase in pressure from the movement of the master cylinder. The system is now in operation. When the solenoid is activated, the compression brake is ready to operate in approximately 1/5 of a second.When camshaft (22) begins to move up on pumping stroke of the electronically controlled unit injector, electronic unit injector rocker arm (14) makes contact with extending master piston (10). As the master piston begins to move up, the oil pressure increases in high pressure oil passage (7). The pressure increases because ball check valve (18) will not allow the oil to escape. The slave piston is forced down against the exhaust rocker arm because of a constant increase in pressure on the upward movement of the electronic unit injector rocker arm. The force is great enough to open exhaust valves (20).Master piston (10) is moved only when the engine cylinder is on the compression stroke. Slave piston (9) opens the two exhaust valves of the same cylinder only on the compression stroke. The exhaust valves are opened immediately before the top center of the compression stroke. The braking force is constant. The operation of the compression brake is caused by the motion of the valve mechanism for the same cylinder. The sequence for the operation of the compression brake is the same sequence as the firing order of the engine.When solenoid valve (2) is in the off position, the engine oil supply passage is closed, and the oil drain passage (16) is opened. The oil will drain from control valve (6). Spring (5) will then push the control valve to the bottom of the chamber. The oil from high pressure oil passage (7) will now drain into the chamber that is above the piston for the control valve. Spring (13) now moves master piston (10) up to the retracted position. The master piston will no longer be in contact with electronic unit injector rocker arm (14). The time that is necessary for the system to stop the operation is approximately 1/10 of a second. The compression brake will not be able to operate now until solenoid valve (2) is activated again by the ECM.Slave piston adjustment screw (8) is used to set the clearance (lash) between the compression brake and the rocker arm assemblies. Refer to Testing and Adjusting, "Compression Brake" for information on the adjustment of the compression brake. The correct adjustment will optimize the brake performance without overstressing the engine components.


Parts shifter Suzuki:

09440-27011
 
09440-27011 SHIFTER SPRING
DT8CENK, DT8CENL, DT8CLJ, DT8CLK, DT8CLL, DT8CLM, DT8CNK, DT8CNL, DT8CSJ, DT8CSL, DT8CSM, DT8MCLN, DT8MCLP, DT8MCLS, DT8MCLT, DT8MCLV, DT8MCSN, DT8MCSP, DT8MCSR, DT8MCSS, DT8MCST, DT8MCSV, DT8MSLR, DT8SCK, DT9.9 CELK, DT9.9CELJ, DT9.9CELL, DT9.9CELM,
Back to top