08221-20256 Suzuki Washer Thickness: 0.8


08221-20256 Washer Thickness: 0.8 Suzuki 30ELE, 30ESE, 30MLE, DT20ELG, DT20ELH, DT20ELJ, DT20ESG, DT20ESH, DT20ESJ, DT20MLG, DT20MLH, DT20MLJ, DT20MSG, DT20MSH, DT20MSJ, DT25ELF, DT25ELG, DT25ELH, DT25ELJ, DT25ESG, DT25ESH, DT25ESJ, DT25MLD, DT25MLE, DT25MLF, DT25MLG, DT25MLH, DT25MLJ, DT25 Washer
08221-20256 Washer Thickness: 0.8 Suzuki
Rating:
28

Buy Washer Thickness: 0.8 08221-20256 Suzuki genuine, new aftermarket parts with delivery
Number on catalog scheme: 23-1
 

Suzuki entire parts catalog list:

30ELE 1984
30ESE 1984
30MLE 1984
DT20ELG 1986
DT20ELH 1987
DT20ELJ 1988
DT20ESG 1986
DT20ESH 1987
DT20ESJ 1988
DT20MLG 1986
DT20MLH 1987
DT20MLJ 1988
DT20MSG 1986
DT20MSH 1987
DT20MSJ 1988
DT25ELF 1985
DT25ELG 1986
DT25ELH 1987
DT25ELJ 1988
DT25ESG 1986
DT25ESH 1987
DT25ESJ 1988
DT25MLD 1983
DT25MLE 1984
DT25MLF 1985
DT25MLG 1986
DT25MLH 1987
DT25MLJ 1988
DT25MSD 1983
DT25MSE 1984
DT25MSF 1985
DT25MSG 1986
DT25MSH 1987
DT25MSJ 1988
DT25SF 1985
DT30ELD 1983
DT30ESD 1983
DT30LF 1985
DT30MLD 1983
DT30MSD 1983
DT30MSE 1984
DT30SF 1985
DT40ECLE 1984
DT40ECLF 1985
DT40ECSE 1984
DT40ECSF 1985
DT40MCLE 1984
DT40MCLF 1985
DT40MCSE 1984
DT40MCSF 1985
DT50ECLE 1984
DT50MCLE 1984

Information:


Illustration 1 g06471531Reference: For more information, refer to supplemental video "C9.3B Engine Air Inlet and Exhaust System" on Caterpillar Channel1.Note: Click or copy the following link into a web browser (a CWS login is required to access Caterpillar Channel1), or scan the following QR code using a QR enabled device.https://channel1.mediaspace.kaltura.com/media/1_qmhzbg63
Illustration 2 g06527995System Overview
Illustration 3 g06237563
Air inlet and exhaust system
(1) Air-to-air aftercooler (ATAAC)
(2) Exhaust manifold
(3) Turbocharger
(4) Clean Emissions Module (CEM)
(5) Intake manifold
(6) Cylinder headThe engine has an electronic control system. The system controls the operation of the engine and Clean Emissions Module (CEM). The CEM consists of the following components: Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and electrical system components.Inlet air is pulled through the air cleaner . The inlet air is then compressed and heated by the compressor wheel of turbocharger to about 150 °C (300 °F). The inlet air is then pushed through air-to-air aftercooler core. As the air flows through the aftercooler, the temperature of the compressed air lowers to about 50° C (122° F). Cooling of the inlet air assists the combustion efficiency of the engine. Increased combustion efficiency helps to lower fuel consumption and increase power output.Aftercooler core is a separate cooler core. The aftercooler core is installed in front of the core of the engine radiator. Air that is ambient temperature is moved across the aftercooler core by the engine fan. The aftercooler core cools the turbocharged inlet air.From aftercooler core, the air is forced into the intake manifold. Air flow from the inlet manifold into the cylinders is controlled by the inlet valves.
Illustration 4 g06237576
(7) Exhaust manifold
(8) Air inlet heater
(9) Aftercooler core
(10) Exhaust valve
(11) Inlet valve
(12) Air inlet
(13) Exhaust outlet
(14) Compressor side of turbocharger
(15) Turbine side of turbochargerThere are two inlet valves and two exhaust valves for each cylinder. Inlet valves open when the piston moves down on the inlet stroke. When the inlet valves open, cooled compressed air from the inlet port is pulled into the cylinder. The inlet valves close and the piston will move up on the compression stroke. The air in the cylinder is compressed. When the piston is near the top of the compression stroke, fuel is injected into the cylinder. The fuel mixes with the air and combustion starts. During the power stroke, the combustion force pushes the piston downward. After the power stroke is complete, the piston moves upward. This upward movement is the exhaust stroke. During the exhaust stroke, the exhaust valves open, and the exhaust gases are pushed through the exhaust port into the exhaust manifold. After the piston completes the exhaust stroke, the exhaust valves close and the cycle will start again. The complete cycle consists of four stages:
Inlet stroke
Compression stroke
Power stroke
Exhaust strokeExhaust gases from the exhaust manifold enter the turbine side of turbocharger to turn the turbine wheel. The turbine wheel is connected to a shaft which drives the compressor wheel. Exhaust gases from the turbocharger pass through the exhaust outlet pipe, the muffler, and the exhaust stack.Turbocharger
Illustration 5 g06237584
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet
(11) Exhaust inletThe turbocharger is installed on the center section of the exhaust manifold. All the exhaust gases from the engine go through the turbocharger. The compressor side of the turbocharger is connected to the aftercooler by a pipe.The exhaust gases enter turbine housing through the exhaust inlet (11). The exhaust gases then push the blades of turbine wheel (8). The turbine wheel is connected by a shaft to the compressor wheel (3). Clean air is pulled through the compressor housing air inlet (2) by rotation of the compressor wheel . The action of the compressor wheel blades causes a compression of the inlet air. This compressor allows the engine to burn more fuel. When the engine burns more fuel, the engine produces more power.When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, more air is forced into the cylinders. The increased flow of air gives the engine more power by allowing the engine to burn the additional fuel with greater efficiency.The operation of the wastegate is controlled by the boost pressure. At high boost pressures, the wastegate opens to decrease boost pressure. At low boost pressure, the wastegate closes to increase boost pressure. Closing the valve of the wastegate allows the turbocharger to operate at maximum performance. When the valve of the wastegate is opened, the rpm of the turbocharger is limited by bypassing a portion of the exhaust gases. The exhaust gases are routed through the wastegate which bypasses the turbine wheel of the turbocharger. Certain applications have turbochargers that are equipped with a smart wastegate. The smart wastegate performs the same function as a regular wastegate, but is also activated by a software-controlled electronic valve in addition to boost pressure. The smart wastegate keeps the wastegate closed during certain operating conditions to prevent wasting exhaust, regardless of boost pressure. The regular wastegate will activate whenever it senses a certain amount of boost pressure, regardless of engine operating conditions.Note: The turbocharger with a wastegate is preset at the factory and no adjustment can be made.Bearings (4) and (6) for the turbocharger use engine oil under pressure for lubrication and cooling. The oil comes in through oil inlet port (5). The oil then goes through passages in the center section to lubricate the bearings. This oil also cools the bearings. Oil from the turbocharger goes out through oil outlet port (10) in the bottom of the center section. The oil then goes back to the engine oil pan.Valve System Components
Illustration 6 g02396141
Valve system components
(40) Rocker arms
(41) Bridge
(42) Spring
(43) Pushrods
(44) Valves
(45) Lifter


Parts washer Suzuki:

09160-06015
 
09160-06015 Washer, Swivel
20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, 30ELE, 30ESE, 30MLE, DT15 MLE, DT15ELD, DT15ELE, DT15ELF, DT15ELG, DT15ELH, DT15ELJ, DT15ESD, DT15ESE, DT15ESF, DT15ESG, DT15ESH, DT15ESJ, DT15MLD, DT15MLF, DT15MLG, DT15MLH, DT15MLJ, DT15MSD, D
09160-08015
 
09160-08015 Washer, Swivel Shaft
20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, 30ELE, 30ESE, 30MLE, DT14C, DT14D, DT14F, DT15 MLE, DT15ELD, DT15ELE, DT15ELF, DT15ELG, DT15ELH, DT15ELJ, DT15ESD, DT15ESE, DT15ESF, DT15ESG, DT15ESH, DT15ESJ, DT15MLD, DT15MLF, DT15MLG, DT15MLH
08322-11088
Washer
08322-11088 Washer
20ELB, 20ELC, 20ELN, 25ELB, 25ELC, 25ELN, 25ELT, 25ELX, 30ELE, 30ESE, 30MLE, DT14C, DT14D, DT14F, DT15 MLE, DT15ELD, DT15ELE, DT15ELF, DT15ELG, DT15ELH, DT15ELJ, DT15ESD, DT15ESE, DT15ESF, DT15ESG, DT15ESH, DT15ESJ, DT15MLD, DT15MLF, DT15MLG, DT15MLH
09160-18011
Washer
09160-18011 Washer
30ELE, 30ESE, 30MLE, DT115, DT140, DT150, DT150SSH, DT150SSJ, DT150SSK, DT150SSL, DT150SSM, DT150SSN, DT150STCLP, DT150STCLR, DT150STCLS, DT150STCLT, DT150TCLH, DT150TCLJ, DT150TCLK, DT150TCLL, DT150TCLM, DT150TCLN, DT150TCLP, DT150TCLR, DT150TCXGM,
09160-10082
Washer
09160-10082 Washer
30ELE, 30ESE, 30MLE, DF100, DF100, DF100, DF100A, DF115, DF115, DF115, DF115A, DF115TL, DF140, DF140, DF140, DF140A, DF140T, DF140T, DF140Z, DF140Z, DF140Z, DF140Z, DF15, DF15, DF15S, DF200T, DF200Z, DF225T, DF225Z, DF25, DF250A, DF250T, DF250Z, DF25
67728-94500
 
67728-94500 Washer
30ELE, 30ESE, 30MLE, DT20ELG, DT20ELH, DT20ELJ, DT20ESG, DT20ESH, DT20ESJ, DT20MLG, DT20MLH, DT20MLJ, DT20MSG, DT20MSH, DT20MSJ, DT25ELF, DT25ELG, DT25ELH, DT25ELJ, DT25ESG, DT25ESH, DT25ESJ, DT25MLD, DT25MLE, DT25MLF, DT25MLG, DT25MLH, DT25MLJ, DT25
09160-25035
Washer Thickness: 1.4
09160-25035 Washer Thickness: 1.4
30ELE, 30ESE, 30MLE, DF25, DF25(R)S, DF25Q, DF25Q(QR), DF25R, DF25R, DF25T, DF30, DF30Q, DF30Q(QR), DF30T, DT20ELG, DT20ELH, DT20ELJ, DT20ESG, DT20ESH, DT20ESJ, DT20MLG, DT20MLH, DT20MLJ, DT20MSG, DT20MSH, DT20MSJ, DT25C, DT25ELF, DT25ELG, DT25ELH, D
09166-17005
 
09166-17005 Washer
30ELE, 30ESE, 30MLE, DF25, DF25(R)S, DF25Q, DF25Q(QR), DF25R, DF25R, DF25T, DF30, DF30Q, DF30Q(QR), DF30T, DT20ELG, DT20ELH, DT20ELJ, DT20ESG, DT20ESH, DT20ESJ, DT20MLG, DT20MLH, DT20MLJ, DT20MSG, DT20MSH, DT20MSJ, DT25C, DT25ELF, DT25ELG, DT25ELH, D
Back to top