842547 Bracket Volvo.Penta
D100A; D100AK; D100B, D120A; D120AK; TD120A, MD100A; TMD100A; TMD100AK, MD120A; MD120AK; TMD120A
Bracket
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
$118.12
15-02-2023
9.89[4.45] Pounds
-: -
Flowmaster 842547 2.5 In(C)/2.5 Out(O) Super 44 409s Muffler
Deep Aggressive Sound Exhaust Note || Noticeable interior resonance || Race proven patented Delta Flow technology || Durable fully welded 409 stainless steel || Easy Installation
Deep Aggressive Sound Exhaust Note || Noticeable interior resonance || Race proven patented Delta Flow technology || Durable fully welded 409 stainless steel || Easy Installation
Compatible models:
Volvo Penta entire parts catalog list:
D120A; D120AK; TD120A; TD120AG; TD120AG PP; TD120AK
MD100A; TMD100A; TMD100AK; TMD100A-CC; MD100B; MD100BK; MD100B-CC
MD120A; MD120AK; TMD120A; TMD120AK; TAMD120A; TAMD120AK; TMD120B; TAMD120B; TAMD120B-CC
Information:
Table 1
J1939 Code and Description CDL Code and Description Comments
1180-3
Engine Turbocharger 1 Turbine Inlet Temperature : Voltage Above Normal 3908-3
Engine Turbocharger #1 Turbine Intake Temperature Sensor : Voltage Above Normal If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
1180-4
Engine Turbocharger 1 Turbine Inlet Temperature : Voltage Below Normal 3908-4
Engine Turbocharger #1 Turbine Intake Temperature Sensor : Voltage Below Normal If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
1180-8
Engine Turbocharger 1 Turbine Inlet Temperature : Abnormal Frequency, Pulse Width, or Period 3908-8
Engine Turbocharger #1 Turbine Intake Temperature Sensor : Abnormal Frequency, Pulse Width, or Period If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
1181-3
Engine Turbocharger 2 Turbine Inlet Temperature : Voltage Above Normal 3909-3
Engine Turbocharger #2 Turbine Intake Temperature Sensor : Voltage Above Normal If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
1181-4
Engine Turbocharger 2 Turbine Inlet Temperature : Voltage Below Normal 3909-4
Engine Turbocharger #2 Turbine Intake Temperature Sensor : Voltage Below Normal If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
1181-8
Engine Turbocharger 2 Turbine Inlet Temperature : Abnormal Frequency, Pulse Width, or Period 3909-8
Engine Turbocharger #2 Turbine Intake Temperature Sensor : Abnormal Frequency, Pulse Width, or Period If the signal from the other exhaust temperature sensor is OK, the signal from that sensor is used. If the signal from the other exhaust temperature sensor is not OK, a default value of 0 °C (32 °F) is used.
The code is logged.
Illustration 1 g06309261
Table 2
Troubleshooting Test Steps Values Results
1. Check for Codes
A. Connect Cat® Electronic Technician (ET) to the service tool connector.
B. Determine if a code is active or logged.
Codes
Result: A -3 code is active or logged.
Proceed to Test Step 2.
Result: A -4 code is active or logged.
Proceed to Test Step 3.
Result: A -8 code is active or logged.
Proceed to Test Step 5.
2. Create a Short at the Sensor Connector
A. Turn the keyswitch to the OFF position.
B. Disconnect the sensor with the active -3 code.
C. Install the jumper wire between the following terminals at the sensor connector:
- Pin 2 (sensor return) and Pin 3 (sensor signal)
D. Connect Cat ET.
E. Use Cat ET to monitor the following:
- -4 code
F. Turn the keyswitch to the OFF position.
Create a Short
Result: A -4 code became active.
Repair: The wiring harness is OK. Replace the sensor.
Verify that the repair eliminated the problem.
Result: A -4 code did not become active.
Proceed to Test Step 4.
3. Create an Open at the Sensor Connector
A. Turn the keyswitch to the OFF position.
B. Disconnect the sensor with the active -4 code.
C. Connect Cat ET.
D. Use Cat ET to monitor the following:
- -3 code
E. Turn the keyswitch to the OFF position.
Create an Open
Result: A -3 code became active.
Repair: The wiring harness is OK. Replace the sensor.
Verify that the repair eliminated the problem.
Result: A -3 code did not become active.
Proceed to Test Step 4.
4. Check the 8 VDC Supply Voltage at the Sensor Connector
A. Turn the keyswitch to the ON position.
B. Measure the voltage at the following pin locations of the affected sensor connector:
- Pin 1 and Pin 2
C. Reconnect the sensor.
Supply Voltage
Result: The supply voltage is approximately 8.0 0.2 VDC
Proceed to Test Step 8.
Result: The supply voltage is not approximately 8.0 0.2 VDC.
Repair: There is a short in the wiring harness to the battery. Repair or replace the wiring harness.
If the problem is not resolved, proceed to Test Step 5.
5. Check the PWM Circuit for an Open
A. Turn the keyswitch to the OFF position.
B. Disconnect the sensor with the active -8 code.
C. Disconnect the J2 connector at the ECM.
D. Measure the resistance between the following locations for the sensor:
- Pin 3 (sensor connector) and the appropriate PWM signal wire on the ECM connector
Open Circuit
Result: Less than 10 ohms of resistance between the sensor connector and the ECM connector.
Proceed to Test Step 6.
Result: More than 10 ohms of resistance between the sensor connector and the ECM connector.
Repair: There is an open circuit in the wiring harness. Repair or replace the wiring harness.
If the problem is not resolved, proceed to Test Step 6.
6. Check the PWM Circuit for a Short Circuit
A. Turn the keyswitch to the OFF position
B. Disconnect the sensor with the active -8 code.
C. Disconnect the J2 connector at the ECM.
D. Measure the resistance between the following locations for the sensor:
- Pin 3 (sensor connector) and Engine ground
Short Circuit
Result: There were more than 100 K ohms of resistance between pin 3 and engine ground.
Proceed to Test Step 7.
Result: There were less than 100 K ohms of resistance between pin 3 and engine ground.
Repair: There is a short circuit in the wiring harness. Repair or replace the wiring harness.
If the problem is not resolved, proceed to Test Step 7.
7. Check the PWM Circuit for a Pin to Pin Short Circuit
A. Turn the keyswitch to the OFF position.
B. Disconnect the sensor with the active -8 code.
C. Disconnect the J2 connector at the ECM.
D. Measure the resistance between the following locations for the sensor:
- Pin 3 (sensor connector) and all ECM connector pins
Short Circuit
Result: There were more than 100 K ohms of resistance between the signal
Parts bracket Volvo Penta:
837587
837587 Bracket
MD100A; TMD100A; TMD100AK, MD120A; MD120AK; TMD120A, TD100CHC; TD100CRC; TD121CHC, TD120AHC; TD120ARC; TAD120AHC, TMD100C, TMD121C; TAMD121C; TAMD121D
820834
836367
836367 Bracket
D100A; D100AK; D100B, D120A; D120AK; TD120A, MD100A; TMD100A; TMD100AK, MD120A; MD120AK; TMD120A
822701
846230
846230 Bracket
MD100A; TMD100A; TMD100AK, MD120A; MD120AK; TMD120A, TAMD122A; TMD122A; TAMD122P-A, TMD100C, TMD102A; TAMD102A; TAMD102D, TMD121C; TAMD121C; TAMD121D
822627
843221
1575983
1575983 Bracket
D100A; D100AK; D100B, D70B; D70B PP; D70B K, TAD1030G; TD1010G; TWD1010G, TAD1030P, TAD1230G; TD1210G; TWD1210G, TAD1230P; TD121GP-87; TWD1210P, TD100G-87; TD1030VE; TAD1030V, TD100G; TD100G-85; TD100G-87, TD120HP-86; TD121; TD121G, TD120HPP; TID120H