899751 Cable rating Volvo.Penta
2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AQ120B; AQ125A; AQ140A, AQ125B, AQ131A; AQ131B; AQ131C, AQ145A; BB145A, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, AQ175A,
Cable
Price: query
Rating:
Compatible models:
2001; 2001B; 2001AG
230A; 230B; 250A
251A
430; 430A; 430B
500; 500A; 501A
571A
740A; BB740A
AD30A; AQAD30A; MD30A
AQ120B; AQ125A; AQ140A
AQ125B
AQ131A; AQ131B; AQ131C
AQ145A; BB145A
AQ145B
AQ151A; AQ151B; AQ151C
AQ171A; AQ171C
AQ175A
AQ200D; AQ200F; 280B
AQ205A; AQ205LB
AQ211A; DP-A; SP-A
AQ225D; AQ225E; AQ225F
AQ231A; AQ231B; AQ231LB
AQ260A; AQ260B; BB260A
AQ271A; AQ271B; AQ271C
AQ290A
AQ311A; AQ311B
AQD70D; TAMD70D; TAMD70E
BB231A; BB261A
D70CHC; D70CRC; TD70CHC
KAD42A; KAMD42A; HS1A
MD31A; TMD31A; TMD31B
MD31A; TMD31B; TAMD31B
MD40A; TMD40A; TMD40B
MD70B; MD70BK; TMD70B
MD70C; TMD70C; TAMD70C
TAMD60C
TD100CHC; TD100CRC; TD121CHC
TD100G; TD100G-85; TD100G-87
TD120HP-86; TD121; TD121G
TD30A; TD31ACE; TD40A
TD60D; TD60D-83; TD60DPP-83
TD61A; TD61AW; TD61ACE
TD70G; TD70G-83; TD70GPP
TID121FG
TMD100C
TMD41A; TMD41B; D41A
TMD41B; D41B; TAMD41B
Volvo.Penta
Volvo Penta entire parts catalog list:
- Cables and Terminals » 899751
251A
430; 430A; 430B; 431A; 431B; 432A; 434A; 500B; 501B; 570A; 572A; 740B; DP-A; DP-A1; DP-A2; DP-C; DP-C1; DP-C1 1.95; DP-C1 2.30; DP-D; DP-D1; DP-D1
500; 500A; 501A
571A
740A; BB740A
AD30A; AQAD30A; MD30A; TAMD30A; TMD30A; AD30; AQAD30; MD30; TAMD30; TMD30
AQ120B; AQ125A; AQ140A; BB140A
AQ125B
AQ131A; AQ131B; AQ131C; AQ131D
AQ145A; BB145A
AQ145B
AQ151A; AQ151B; AQ151C
AQ171A; AQ171C
AQ175A
AQ200D; AQ200F; 280B; 290A; 290DP
AQ205A; AQ205LB
AQ211A; DP-A; SP-A; 290A
AQ225D; AQ225E; AQ225F; BB225A; BB225AV; BB225B; BB225C; 275; 280B; 290A; 290DP; MS3B; MS3C; MS4A
AQ231A; AQ231B; AQ231LB; 290A; DP-A; SP-A; 275A; 285A
AQ260A; AQ260B; BB260A; BB260AV; BB260B; BB260C
AQ271A; AQ271B; AQ271C; AQ271D; AQ271LB
AQ290A
AQ311A; AQ311B
AQD70D; TAMD70D; TAMD70E
BB231A; BB261A
D70CHC; D70CRC; TD70CHC; TD70CRC
KAD42A; KAMD42A; HS1A; MS5B
MD31A; TMD31A; TMD31B; TAMD31A; TAMD31B; AD31; AQAD31A; AD31B; 290A; DP-A; DP-B; DP-A1; DP-B1; SP-A; SP-A1
MD31A; TMD31B; TAMD31B; AD31B
MD40A; TMD40A; TMD40B; TMD40C; AQD40A; TAMD40A; TAMD40B; AD40B; AQAD40A; AQAD40B
MD70B; MD70BK; TMD70B; THAMD70B; TAMD70B; AQD70BL; AQD70B
MD70C; TMD70C; TAMD70C; THAMD70C; AQD70BL; AQD70CL
TAMD60C
TD100CHC; TD100CRC; TD121CHC; TD121CRC; TAD121CHC
TD100G; TD100G-85; TD100G-87; TD100GG; TD100GG-85; TD100GG-87; TD100GGP-87; TD100HP-87; TD100HPB-87; TD100GP; TD100GP-85; TD100GGP; TID100K;
TD120HP-86; TD121; TD121G; TD121G-87; TD121GG; TD121GG-86; TD121GG-87; TD121GGP; TD121GGP-87; TD121GP-87; TD121GPB-87; TID121K; TID121KG; TID
TD30A; TD31ACE; TD40A; TD45B; D45A
TD60D; TD60D-83; TD60DPP-83; TD60DG-83; TID60D; TID60DG
TD61A; TD61AW; TD61ACE; TD61AG; TD61AGP; TD61AP; TD61APB; TID61AG; TD71A; TD71AW; TD71ACE; TD71AG; TD71AGP; TD71AP; TD71APB; TID71A; TID71AG; TID
TD70G; TD70G-83; TD70GPP; TD70GPP-83; TID70G; TID70GPP; TID70GG; TD70GG; TD70GG-83
TID121FG
TMD100C
TMD41A; TMD41B; D41A; D41B; TAMD41A; TAMD41B; AQAD41A; AD41A; AD41B; 290A; DP-A; DP-B; DP-A1; DP-B1; SP-A; SP-A1; AD41BJ; AD41; AD41P-B; D41; TAMD41
TMD41B; D41B; TAMD41B; AD41B; AD41BJ
Information:
Engine Design
Cylinder, Valve And Injection Pump LocationBore ... 114.3 mm (4.5 in)Stroke ... 127.0 mm (5.0 in)Number Of Cylinders ... 8Cylinder Arrangement ... 90°VFiring Order (Injection Sequence) ... 1,2,7,3,4,5,6,8Direction Of Rotation (As Seen From Flywheel End) ... CounterclockwiseFuel System
The sleeve metering fuel system is a pressure type fuel system. The name for the fuel system is from the method used to control the amount of fuel sent to the cylinders. This fuel system has an injection pump for each cylinder of the engine. It also has a fuel transfer pump on the front of the injection pump housing. The governor is on the rear of the injection pump housing.The drive gear for the fuel transfer pump is on the front of the camshaft for the injection pumps. The carrier for the governor weights is bolted to the rear of the camshaft for the injection pumps. The injection pump housing has a bearing at each end to support the camshaft. The camshaft for the sleeve metering fuel system is driven by the timing gears at the front of the engine.The injection pumps, lifters and rollers, and the camshaft are all inside of the pump housing. The pump housing and the governor housing are full of fuel at transfer pump pressure (fuel system pressure).
Diesel fuel is the only lubrication for the moving parts in the transfer pump, injection pump housing and the governor. The injection pump housing must be full of fuel before turning the camshaft.
This fuel system has governor weights, a thrust collar and two governor springs. Rotation of the shaft for governor control, compression of the governor springs, movement of connecting linkage in the governor and injection pump housing controls the amount of fuel sent to the engine cylinders.Fuel from fuel tank (7) is pulled by fuel transfer pump (11) through water separator (F) (if so equipped) and fuel filter (9). From fuel filter (9) the fuel goes to housing for fuel injection pumps (14). The fuel goes in housing (14) at the top and goes through an inside passage to fuel transfer pump (11).
Schematic of Fuel System
(1) Fuel priming pump (closed position). (2) Fuel priming pump (open position). (3) Return line for constant bleed valve. (4) Constant bleed valve. (5) Manual bleed valve. (6) Fuel injection nozzle. (7) Fuel tank. (8) Fuel inlet line. (9) Fuel filter. (10) Fuel line to injection pump. (11) Fuel transfer pump. (12) Fuel bypass valve. (13) Camshaft. (14) Housing for fuel injection pumps. (A) Check valve. (B) Check valve. (C) Check valve. (D) Check valve. (F) Water separator.From fuel transfer pump (11), fuel under pressure, fills the housing for the fuel injection pumps (14). Pressure of the fuel in housing (14) is controlled by bypass valve (12). Pressure of the fuel at FULL LOAD is 205 35 kPa (30 5 psi). If the pressure of fuel in housing (14) gets too high, bypass valve (12) will move (open) to let some of the fuel return to the inlet of fuel transfer pump (11).Flow of Fuel Using the Priming Pump
When the handle of priming pump (2) is pulled out, negative air pressure in priming pump (2) opens check valve (A) and pulls fuel from fuel tank (7). Pushing the handle in closes check valve (A) and opens check valve (B). This pushes air and/or fuel into housing (14) through the fuel passages and check valve (C). More operation of priming pump (2) will pull fuel from fuel tank (7) until the fuel lines, fuel filter (9) and housing (14) are full of fuel. Do this until the flow of fuel from manual bleed valve (5) is free of air bubbles.Constant Bleed Valve
Constant bleed valve (4) lets approximately 9 gallons of fuel per hour go back to fuel tank (7). This fuel goes back to fuel tank (7) through return line for constant bleed valve (3). This flow of fuel removes air from housing (14) and also helps to cool the fuel injection pump. Check valve (D) makes a restriction in this flow of fuel until the pressure in housing (14) is at 55 20 kPa (8 3 psi).
Constant Bleed Valve
(4) Constant bleed valve. (D) Check valve.Operation of Fuel Injection Pumps
The main components of a fuel injection pump in the sleeve metering fuel system are barrel (A), plunger (B), and sleeve (D). Plunger (B) moves up and down inside the barrel (A) and sleeve (D). Barrel (A) is stationary while sleeve (D) is moved up and down on plunger (B) to make a change in the amount of fuel for injection.
Fuel Injection Sequence
(1,2,3) Injection stroke (positions) of a fuel injection pump. (4) Injection pump camshaft. (A) Barrel. (B) Plunger. (C) Fuel inlet. (D) Sleeve. (E) Fuel outlet. (F) Lifter.When the engine is running, fuel under pressure from the fuel transfer pump goes in the center of plunger (B) through fuel inlet (C) during the down stroke of plunger (B). Fuel can not go through fuel outlet (E) at this time because it is stopped by sleeve (D), (see position 1).Fuel injection starts (see position 2) when plunger (B) is lifted up in barrel (A) enough to close fuel inlet (C). There is an increase in fuel pressure above plunger (B), when the plunger is lifted by camshaft (4). The fuel above plunger (B) is injected into the engine cylinder.Injection will stop (see position 3) when fuel outlet (E) is lifted above the top edge of sleeve (D) by camshaft (4). This movement lets the fuel that is above, and in, plunger (B) go through fuel outlet (E) and return to the fuel injection pump housing.When the sleeve (D) is raised on plunger (B), fuel outlet (E) is covered for a longer time, causing more fuel to be injected in the engine cylinders. If sleeve (D) is low on plunger (B), fuel outlet (E) is covered for a shorter time, causing less fuel to be injected.Operation of 7000 Series Fuel Injection Nozzle
The fuel injection nozzle goes through the cylinder head
Cylinder, Valve And Injection Pump LocationBore ... 114.3 mm (4.5 in)Stroke ... 127.0 mm (5.0 in)Number Of Cylinders ... 8Cylinder Arrangement ... 90°VFiring Order (Injection Sequence) ... 1,2,7,3,4,5,6,8Direction Of Rotation (As Seen From Flywheel End) ... CounterclockwiseFuel System
The sleeve metering fuel system is a pressure type fuel system. The name for the fuel system is from the method used to control the amount of fuel sent to the cylinders. This fuel system has an injection pump for each cylinder of the engine. It also has a fuel transfer pump on the front of the injection pump housing. The governor is on the rear of the injection pump housing.The drive gear for the fuel transfer pump is on the front of the camshaft for the injection pumps. The carrier for the governor weights is bolted to the rear of the camshaft for the injection pumps. The injection pump housing has a bearing at each end to support the camshaft. The camshaft for the sleeve metering fuel system is driven by the timing gears at the front of the engine.The injection pumps, lifters and rollers, and the camshaft are all inside of the pump housing. The pump housing and the governor housing are full of fuel at transfer pump pressure (fuel system pressure).
Diesel fuel is the only lubrication for the moving parts in the transfer pump, injection pump housing and the governor. The injection pump housing must be full of fuel before turning the camshaft.
This fuel system has governor weights, a thrust collar and two governor springs. Rotation of the shaft for governor control, compression of the governor springs, movement of connecting linkage in the governor and injection pump housing controls the amount of fuel sent to the engine cylinders.Fuel from fuel tank (7) is pulled by fuel transfer pump (11) through water separator (F) (if so equipped) and fuel filter (9). From fuel filter (9) the fuel goes to housing for fuel injection pumps (14). The fuel goes in housing (14) at the top and goes through an inside passage to fuel transfer pump (11).
Schematic of Fuel System
(1) Fuel priming pump (closed position). (2) Fuel priming pump (open position). (3) Return line for constant bleed valve. (4) Constant bleed valve. (5) Manual bleed valve. (6) Fuel injection nozzle. (7) Fuel tank. (8) Fuel inlet line. (9) Fuel filter. (10) Fuel line to injection pump. (11) Fuel transfer pump. (12) Fuel bypass valve. (13) Camshaft. (14) Housing for fuel injection pumps. (A) Check valve. (B) Check valve. (C) Check valve. (D) Check valve. (F) Water separator.From fuel transfer pump (11), fuel under pressure, fills the housing for the fuel injection pumps (14). Pressure of the fuel in housing (14) is controlled by bypass valve (12). Pressure of the fuel at FULL LOAD is 205 35 kPa (30 5 psi). If the pressure of fuel in housing (14) gets too high, bypass valve (12) will move (open) to let some of the fuel return to the inlet of fuel transfer pump (11).Flow of Fuel Using the Priming Pump
When the handle of priming pump (2) is pulled out, negative air pressure in priming pump (2) opens check valve (A) and pulls fuel from fuel tank (7). Pushing the handle in closes check valve (A) and opens check valve (B). This pushes air and/or fuel into housing (14) through the fuel passages and check valve (C). More operation of priming pump (2) will pull fuel from fuel tank (7) until the fuel lines, fuel filter (9) and housing (14) are full of fuel. Do this until the flow of fuel from manual bleed valve (5) is free of air bubbles.Constant Bleed Valve
Constant bleed valve (4) lets approximately 9 gallons of fuel per hour go back to fuel tank (7). This fuel goes back to fuel tank (7) through return line for constant bleed valve (3). This flow of fuel removes air from housing (14) and also helps to cool the fuel injection pump. Check valve (D) makes a restriction in this flow of fuel until the pressure in housing (14) is at 55 20 kPa (8 3 psi).
Constant Bleed Valve
(4) Constant bleed valve. (D) Check valve.Operation of Fuel Injection Pumps
The main components of a fuel injection pump in the sleeve metering fuel system are barrel (A), plunger (B), and sleeve (D). Plunger (B) moves up and down inside the barrel (A) and sleeve (D). Barrel (A) is stationary while sleeve (D) is moved up and down on plunger (B) to make a change in the amount of fuel for injection.
Fuel Injection Sequence
(1,2,3) Injection stroke (positions) of a fuel injection pump. (4) Injection pump camshaft. (A) Barrel. (B) Plunger. (C) Fuel inlet. (D) Sleeve. (E) Fuel outlet. (F) Lifter.When the engine is running, fuel under pressure from the fuel transfer pump goes in the center of plunger (B) through fuel inlet (C) during the down stroke of plunger (B). Fuel can not go through fuel outlet (E) at this time because it is stopped by sleeve (D), (see position 1).Fuel injection starts (see position 2) when plunger (B) is lifted up in barrel (A) enough to close fuel inlet (C). There is an increase in fuel pressure above plunger (B), when the plunger is lifted by camshaft (4). The fuel above plunger (B) is injected into the engine cylinder.Injection will stop (see position 3) when fuel outlet (E) is lifted above the top edge of sleeve (D) by camshaft (4). This movement lets the fuel that is above, and in, plunger (B) go through fuel outlet (E) and return to the fuel injection pump housing.When the sleeve (D) is raised on plunger (B), fuel outlet (E) is covered for a longer time, causing more fuel to be injected in the engine cylinders. If sleeve (D) is low on plunger (B), fuel outlet (E) is covered for a shorter time, causing less fuel to be injected.Operation of 7000 Series Fuel Injection Nozzle
The fuel injection nozzle goes through the cylinder head
Parts cable Volvo Penta:
948211
948211 Cable tie
1372, 2001; 2001B; 2001AG, 3.0GLM-C; 3.0GLP-C, 3.0GLMMDA; 3.0GSPMDA, 3.0GLP-A; 3.0GLP-B; 3.0GLM-A, 3.0GLP-D, 3.0GLP-E, 3.0GLP-J; 3.0GLP-N, 3.0GSMBYMCE; 3.0GSPBYCCE, 3.0GSMHUB; 3.0GSPHUB, 3.0GSMLKD; 3.0GSPLKD, 3.0GSMNCA; 3.0GSMNCS; 3.0GSPNCA, 3.0GSMWT
860144
843085
843085 Cable
2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AQ120B; AQ125A; AQ140A, AQ125B, AQ131A; AQ131B; AQ131C, AQ145A; BB145A, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, AQ175A,
940331
940331 Cable terminal
1372, 2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 5.0GXiCE-J; 5.0GXiCE-JF; 5.0GXiCE-M, 5.0GXiE-JF; 5.0GXiE-J; 5.0OSiE-JF, 5.7GiCE-300-J; 5.7GiCE-300-JF; 5.7GXiCE-J, 5.7GiE-300-J; 5.7GiE-300-JF; 5.7GXiE-J, 500; 500A; 501A, 571A, 740A
881484
881484 Cable terminal
1372, 2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 5.0GXiCE-J; 5.0GXiCE-JF; 5.0GXiCE-M, 5.0GXiE-JF; 5.0GXiE-J; 5.0OSiE-JF, 5.7GiCE-300-J; 5.7GiCE-300-JF; 5.7GXiCE-J, 5.7GiE-300-J; 5.7GiE-300-JF; 5.7GXiE-J, 500; 500A; 501A, 571A, 740A
944485
944485 Cable terminal, flat pin
1372, 2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 5.0GXiCE-J; 5.0GXiCE-JF; 5.0GXiCE-M, 5.0GXiE-JF; 5.0GXiE-J; 5.0OSiE-JF, 5.7GiCE-300-J; 5.7GiCE-300-JF; 5.7GXiCE-J, 5.7GiE-300-J; 5.7GiE-300-JF; 5.7GXiE-J, 500; 500A; 501A, 571A, 740A
858057
850955
850955 Cable block
230A; 230B; 250A, AD30A; AQAD30A; MD30A, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ125B, AQ131A; AQ131B; AQ131C, AQ145A; BB145A, AQ175A, AQ190A; AQ240A, AQ200B; AQ225B, AQ200C; AQ200D; AQ225C, AQ200D; AQ200F; 280B, AQ225D; AQ225E; AQ225F, AQ23