191996 Clamp Volvo.Penta
D100A; D100AK; D100B
Clamp
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
$17.09
20-12-2018
21 Hundredths Pounds
Anxingo: Anxingo
Anxingo Carburetor for Toro Power Clear 421&621 19-1996 120-4418 120-4419 Models 38451 38452 38453 38454 38458 38459 38567 3858 Snow Blower 621E 621R 621ZE CCR6053 CCR6053R CCR6053ES
●FITMENT - For Power Clear Snowthrower(2010-2011) 38588 38589 38453 38454 Power Clear 621 Snowthrower(2012) 38451 38452 38453 38458 38459 CCR 6053 R CCR 6053 ES Quick Clear Snowthrower(2011-2012) 38567 38567,Replaces Toro Part # - 120-4418,120-4419,119-1996. || ●ALL WELL STRUCTURED - Beautifully built with smooth surface,improved air intake holes to improved airflow structure,stable performance and sensitive reaction. || ●LONG LASTING - Manufactured with the best finish craft which will prevent the metal from getting rusty,given the circumstance that the carburetor being working in gas fluid. || ●HIGH PERFORMANCE - The perfect solution for the appropriate ratio of air and fuel mixture,provides great power and torque.It's an ideal replacement for your stock one,and will make your engine run like new! || ●PACKING LIST - 1 x carburetor, 1 x choke lever, 3 x gasket, 1 x fuel filter, 1 x 2-feet fuel line, 1 x fuel shut off valve, 4 x clamps
●FITMENT - For Power Clear Snowthrower(2010-2011) 38588 38589 38453 38454 Power Clear 621 Snowthrower(2012) 38451 38452 38453 38458 38459 CCR 6053 R CCR 6053 ES Quick Clear Snowthrower(2011-2012) 38567 38567,Replaces Toro Part # - 120-4418,120-4419,119-1996. || ●ALL WELL STRUCTURED - Beautifully built with smooth surface,improved air intake holes to improved airflow structure,stable performance and sensitive reaction. || ●LONG LASTING - Manufactured with the best finish craft which will prevent the metal from getting rusty,given the circumstance that the carburetor being working in gas fluid. || ●HIGH PERFORMANCE - The perfect solution for the appropriate ratio of air and fuel mixture,provides great power and torque.It's an ideal replacement for your stock one,and will make your engine run like new! || ●PACKING LIST - 1 x carburetor, 1 x choke lever, 3 x gasket, 1 x fuel filter, 1 x 2-feet fuel line, 1 x fuel shut off valve, 4 x clamps
$206.60
01-09-2017
7.88[3.15] pounds
A1 Cardone: A1 Cardone
Cardone 19-1996 Remanufactured Import Friction Ready (Unloaded) Brake Caliper
Copper washers included for a perfect seal||100% SAE specific rubber seals provided for OE fit and function||New bleeder screws provided for trouble-free bleeding and positive seal||Includes all installation hardware necessary for the job||Every unit is 100% tested to ensure quality and reliability
Copper washers included for a perfect seal||100% SAE specific rubber seals provided for OE fit and function||New bleeder screws provided for trouble-free bleeding and positive seal||Includes all installation hardware necessary for the job||Every unit is 100% tested to ensure quality and reliability
Compatible models:
D100A; D100AK; D100B
Volvo.Penta
Volvo Penta entire parts catalog list:
Information:
Starting Motor
Illustration 1 g01964824
Typical example
12 Volt 4 kW Starting Motor
(1) Terminal 30 for connection of the battery cable
(2) Terminal 50 for connection of ignition switch
(3) Terminal 31 for connection of the ground
Illustration 2 g01964833
Typical example
24 Volt 5.5 kW Starting Motor
(4) Terminal 30 for connection of the battery cable
(5) Integrated Magnetic Switch (IMS)
(6) Terminal 50 for connection of ignition switch
(7) Terminal 31 for connection of the ground
Illustration 3 g01964823
Typical example
24 Volt 8 kW Starting Motor
(8) Terminal 30 for connection of the battery cable
(9) Integrated Magnetic Switch (IMS)
(10) Terminal 50 for connection of ignition switch
(11) Terminal 31 for connection of the ground The starting motor turns the engine via a gear on the engine flywheel. The starting motor speed must be high enough in order to initiate a sustained operation of the fuel ignition in the cylinders.The starting motor consists of the main armature and a solenoid. The solenoid is a relay with two windings Pull-In (PI) and Hold-In (HI). Upon activation of ignition switch, both windings move the iron core by electromagnets. The linkage from the iron core acts to move the pinion toward the flywheel ring gear for engagement. Upon complete engagement, the solenoid completes the high current circuit that supplies electric power to the main armature in order to provide rotation. During cranking of the engine, only the Hold-In (HI) winding is active.The ignition switch is deactivated once the desired engine speed has been achieved. The circuit is disconnected. The armature will stop rotating. Return springs that are located on the shafts and the solenoid will disengage the pinion from flywheel ring gear back to the rest position.The starting motor has an overrunning clutch to prevent damage to the starting motor and mechanical transmissions as the engine speed increases.Certain higher powered starting motors are designed with an Integrated Magnetic Switch (IMS). The Integrated Magnetic Switch (IMS) is activated by the ignition switch. The solenoid circuit then engages the starting motor. The benefit of Integrated Magnetic Switch (IMS) is a lower current in the ignition circuit that will allow the engine ECM to control ignition without the use of a relay.Alternator
The electrical outputs of the alternator have the following characteristics:
Three-phase
Full-wave
RectifiedThe alternator is an electro-mechanical component. The alternator is driven by a belt from the crankshaft pulley. The alternator charges the storage battery during the engine operation.The alternator is cooled by an external fan which is mounted behind the pulley. The fan may be mounted internally. The fan forces air through the holes in the front of the alternator. The air exits through the holes in the back of the alternator.The alternator converts the mechanical energy and the magnetic field into alternating current and voltage. This conversion is done by rotating a direct current electromagnetic field on the inside of a three-phase stator. The electromagnetic field is generated by electrical current flowing through a rotor. The stator generates alternating current and voltage.The alternating current is changed to direct current by a three-phase, full-wave rectifier. Direct current flows to the output terminal of the alternator. The direct current is used for the charging process.A regulator is installed on the rear end of the alternator. Two brushes conduct current through two slip rings. The current then flows to the rotor field. A capacitor protects the rectifier from high voltages.The alternator is connected to the battery through the ignition switch. Therefore, alternator excitation occurs when the switch is in the ON position.
Illustration 1 g01964824
Typical example
12 Volt 4 kW Starting Motor
(1) Terminal 30 for connection of the battery cable
(2) Terminal 50 for connection of ignition switch
(3) Terminal 31 for connection of the ground
Illustration 2 g01964833
Typical example
24 Volt 5.5 kW Starting Motor
(4) Terminal 30 for connection of the battery cable
(5) Integrated Magnetic Switch (IMS)
(6) Terminal 50 for connection of ignition switch
(7) Terminal 31 for connection of the ground
Illustration 3 g01964823
Typical example
24 Volt 8 kW Starting Motor
(8) Terminal 30 for connection of the battery cable
(9) Integrated Magnetic Switch (IMS)
(10) Terminal 50 for connection of ignition switch
(11) Terminal 31 for connection of the ground The starting motor turns the engine via a gear on the engine flywheel. The starting motor speed must be high enough in order to initiate a sustained operation of the fuel ignition in the cylinders.The starting motor consists of the main armature and a solenoid. The solenoid is a relay with two windings Pull-In (PI) and Hold-In (HI). Upon activation of ignition switch, both windings move the iron core by electromagnets. The linkage from the iron core acts to move the pinion toward the flywheel ring gear for engagement. Upon complete engagement, the solenoid completes the high current circuit that supplies electric power to the main armature in order to provide rotation. During cranking of the engine, only the Hold-In (HI) winding is active.The ignition switch is deactivated once the desired engine speed has been achieved. The circuit is disconnected. The armature will stop rotating. Return springs that are located on the shafts and the solenoid will disengage the pinion from flywheel ring gear back to the rest position.The starting motor has an overrunning clutch to prevent damage to the starting motor and mechanical transmissions as the engine speed increases.Certain higher powered starting motors are designed with an Integrated Magnetic Switch (IMS). The Integrated Magnetic Switch (IMS) is activated by the ignition switch. The solenoid circuit then engages the starting motor. The benefit of Integrated Magnetic Switch (IMS) is a lower current in the ignition circuit that will allow the engine ECM to control ignition without the use of a relay.Alternator
The electrical outputs of the alternator have the following characteristics:
Three-phase
Full-wave
RectifiedThe alternator is an electro-mechanical component. The alternator is driven by a belt from the crankshaft pulley. The alternator charges the storage battery during the engine operation.The alternator is cooled by an external fan which is mounted behind the pulley. The fan may be mounted internally. The fan forces air through the holes in the front of the alternator. The air exits through the holes in the back of the alternator.The alternator converts the mechanical energy and the magnetic field into alternating current and voltage. This conversion is done by rotating a direct current electromagnetic field on the inside of a three-phase stator. The electromagnetic field is generated by electrical current flowing through a rotor. The stator generates alternating current and voltage.The alternating current is changed to direct current by a three-phase, full-wave rectifier. Direct current flows to the output terminal of the alternator. The direct current is used for the charging process.A regulator is installed on the rear end of the alternator. Two brushes conduct current through two slip rings. The current then flows to the rotor field. A capacitor protects the rectifier from high voltages.The alternator is connected to the battery through the ignition switch. Therefore, alternator excitation occurs when the switch is in the ON position.
Parts clamp Volvo Penta:
942542
942542 Clamp
1372, D100A; D100AK; D100B, D100BHC; D100BRC; TD100AHC, D120A; D120AK; TD120A, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A
18387
18387 Clamp
AQ115A; AQ115B; AQ130, D100A; D100AK; D100B, D120A; D120AK; TD120A, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D70B; D70B PP; D70B K, D70CHC; D70CRC; TD70CHC, TAD1030G; TD1010G; TWD1010G, TAMD122A; TMD122A; TAMD122P-A, TAMD61A; TAMD62A, T
952629
952629 Clamp
2001; 2001B; 2001AG, AD30A; AQAD30A; MD30A, AQ115A; AQ115B; AQ130, AQD70D; TAMD70D; TAMD70E, D100A; D100AK; D100B, D11A-A; D11A-B; D11A-C, D11B3-A MP; D11B4-A MP, D13B-A MP; D13B-B MP; D13B-C MP, D13C1-A MP; D13C2-A MP; D13C3-A MP, D3-110I-A; D3-110I
824160
824160 Clamp
D100A; D100AK; D100B, D120A; D120AK; TD120A, MD100A; TMD100A; TMD100AK, MD120A; MD120AK; TMD120A, MD70B; MD70BK; TMD70B
30874
191296
191296 Clamp
D100A; D100AK; D100B, TD30A; TD31ACE; TD40A, TD520VE; TD720VE, TD610G; TWD610G; TD710G, TD610V; TWD610V; TD630VE, TD61A; TD61AW; TD61ACE, TD71A; TID71A; TWD710V, TWD610P; TWD610PB; TWD710P
942287
951190