21697351 Gasket Volvo.Penta
TAD550GE; TAD551GE; TAD750GE
Gasket
Price: query
Rating:
Compatible models:
TAD550GE; TAD551GE; TAD750GE
Volvo.Penta
Volvo Penta entire parts catalog list:
Information:
Engine Design
3304B Engine
Cylinder And Valve IdentificationBore ... 120.7 mm (4.75 in)Stroke ... 152.4 mm (6.00 in)Number of cylinders ... 4Cylinder arrangement ... in-lineFiring order (injection sequence) ... 1,3,4,2Direction of rotation (when viewed from flywheel end) ... counterclockwiseThe No. 1 cylinder is opposite flywheel end.3306B Engine
Cylinder And Valve IdentificationBore ... 120.7 mm (4.75 in)Stroke ... 152.4 mm (6.00 in)Number of cylinders ... 6Cylinder arrangement ... in-lineFiring order (injection sequence) ... 1,5,3,6,2,4Direction of rotation (when viewed from flywheel end) ... counterclockwiseThe No. 1 cylinder is opposite flywheel end.Fuel System
Fuel Flow
Fuel System Schematic
(1) Fuel tank. (2) Fuel return line. (3) Priming pump. (4) Fuel injection nozzle. (5) Fuel injection line. (6) Fuel injection pump. (7) Primary fuel filter. (8) Check valve. (9) Fuel transfer pump. (10) Secondary fuel filter. (11) Constant bleed orifice. (12) Fuel injection pump housing.Fuel is pulled from fuel tank (1) through primary fuel filter (7) and check valves (8) by fuel transfer pump (9). From the fuel transfer pump the fuel is pushed through secondary fuel filter (10) and to the fuel manifold in fuel injection pump housing (12). The pumping spring in the fuel transfer pump keeps the fuel pressure in the system at 170 to 290 kPa (25 to 42 psi). Constant bleed orifice (11) lets a constant flow of fuel go through fuel return line (2) back to fuel tank (1). This helps keep the fuel cool and free of air. Fuel injection pump (6) gets fuel from the fuel manifold and pushes fuel at very high pressure through fuel injection line (5) to fuel injection nozzle (4). The fuel injection nozzle has very small holes in the tip that change the flow of fuel to a very fine spray that gives good fuel combustion in the cylinder.Fuel Injection Pump
The fuel injection pump increases the pressure of the fuel and sends an exact amount of fuel to the fuel injection nozzle. There is one fuel injection pump for each cylinder in the engine.
Fuel Injection Pump (Typical Illustration)
(1) Inlet passage. (2) Check valve. (3) Bypass closed port. (4) Spill port. (5) Scroll. (6) Slot. (7) Pump plunger. (8) Spring. (9) Fuel rack. (10) Gear. (11) Lifter. (12) Cam.The fuel injection pump is moved by cam (12) of the fuel pump camshaft. When the camshaft turns, the cam raises lifter (11) and pump plunger (7) to the top of the strke. The pump plunger always makes a full stroke. As the camshaft turns farther, spring (8) returns the pump plunger and lifter to the bottom of the stroke.When the pump plunger is at the bottom of the stroke, fuel transfer pump pressure goes into inlet passage (1), around the pump barrel and to bypass closed port (3). Fuel fills the area above the pump plunger.After the pump plunger begins the up stroke, fuel will be pushed out the bypass closed port until the top of the pump plunger closes the port. As the pump plunger travels farther up, the pressure of the fuel increases. At approximately 690 kPa (100 psi), check valve (2) opens and lets fuel flow into the fuel injection line to the fuel injection nozzle. When the pump plunger travels farther up, scroll (5) uncovers spill port (4). The fuel above the pump plunger goes through slot (6), along the edge of scroll (5) and out spill port (4) back to the fuel manifold. This is the end of the injection stroke. The pump plunger can have more travel up, but no more fuel will be sent to the fuel injection nozzle.When the pump plunger travels down and uncovers bypass closed port (3), fuel begins to fill the area above the pump plunger again, and the pump is ready to begin another stroke.The amount of fuel the injection pump sends to the injection nozzle is changed by the rotation of the pump plunger. Gear (10) is attached to the pump plunger and is in mesh with fuel rack (9). The governor moves the fuel rack according to the fuel needs of the engine. When the governor moves the fuel rack, and the fuel rack turns the pump plunger, scroll (5) changes the distance the pump plunger pushes fuel between bypass closed port (3) and spill port (4) opening. The longer the distance from the top of the pump plunger to the point where scroll (5) uncovers spill port (4), the more fuel will be injected.To stop the engine, the pump plunger is rotated so that slot (6) on the pump plunger is in line with spill port (4). The fuel will now go out the spill port and not to the injection nozzle.Fuel Injection Nozzle
The fuel injection nozzle goes through the cylinder head into the combustion chamber. The fuel injection pump sends fuel with high pressure to the fuel injection nozzle where the fuel is made into a fine spray for good combustion.
Fuel Injection Nozzle (Typical Illustration)
(1) Carbon dam. (2) Seal. (3) Passage. (4) Filter screen. (5) Orifice. (6) Valve. (7) Diameter. (8) Spring.Seal (2) goes against the cylinder head and prevents leakage of compression from the cylinder. Carbon dam (1) keeps carbon out of the bore in the cylinder head for the nozzle.Fuel with high pressure from the fuel injection pump goes into the inlet passage. Fuel then goes through filter screen (4) and into passage (3) to the area below diameter (7) of valve (6). When the pressure of the fuel that pushes against diameter (7) becomes greater than the force of spring (8), valve (6) lifts up.This occurs when the fuel pressure goes above the Valve Opening Pressure of the fuel injection nozzle. When valve (6) lifts, the tip of the valve comes off the nozzle seat and the fuel will go through orifices (5) into the combustion chamber.The injection of fuel continues until the pressure of fuel against diameter (7) becomes less than the force of spring (8). With less pressure against diameter (7), spring (8) pushes
3304B Engine
Cylinder And Valve IdentificationBore ... 120.7 mm (4.75 in)Stroke ... 152.4 mm (6.00 in)Number of cylinders ... 4Cylinder arrangement ... in-lineFiring order (injection sequence) ... 1,3,4,2Direction of rotation (when viewed from flywheel end) ... counterclockwiseThe No. 1 cylinder is opposite flywheel end.3306B Engine
Cylinder And Valve IdentificationBore ... 120.7 mm (4.75 in)Stroke ... 152.4 mm (6.00 in)Number of cylinders ... 6Cylinder arrangement ... in-lineFiring order (injection sequence) ... 1,5,3,6,2,4Direction of rotation (when viewed from flywheel end) ... counterclockwiseThe No. 1 cylinder is opposite flywheel end.Fuel System
Fuel Flow
Fuel System Schematic
(1) Fuel tank. (2) Fuel return line. (3) Priming pump. (4) Fuel injection nozzle. (5) Fuel injection line. (6) Fuel injection pump. (7) Primary fuel filter. (8) Check valve. (9) Fuel transfer pump. (10) Secondary fuel filter. (11) Constant bleed orifice. (12) Fuel injection pump housing.Fuel is pulled from fuel tank (1) through primary fuel filter (7) and check valves (8) by fuel transfer pump (9). From the fuel transfer pump the fuel is pushed through secondary fuel filter (10) and to the fuel manifold in fuel injection pump housing (12). The pumping spring in the fuel transfer pump keeps the fuel pressure in the system at 170 to 290 kPa (25 to 42 psi). Constant bleed orifice (11) lets a constant flow of fuel go through fuel return line (2) back to fuel tank (1). This helps keep the fuel cool and free of air. Fuel injection pump (6) gets fuel from the fuel manifold and pushes fuel at very high pressure through fuel injection line (5) to fuel injection nozzle (4). The fuel injection nozzle has very small holes in the tip that change the flow of fuel to a very fine spray that gives good fuel combustion in the cylinder.Fuel Injection Pump
The fuel injection pump increases the pressure of the fuel and sends an exact amount of fuel to the fuel injection nozzle. There is one fuel injection pump for each cylinder in the engine.
Fuel Injection Pump (Typical Illustration)
(1) Inlet passage. (2) Check valve. (3) Bypass closed port. (4) Spill port. (5) Scroll. (6) Slot. (7) Pump plunger. (8) Spring. (9) Fuel rack. (10) Gear. (11) Lifter. (12) Cam.The fuel injection pump is moved by cam (12) of the fuel pump camshaft. When the camshaft turns, the cam raises lifter (11) and pump plunger (7) to the top of the strke. The pump plunger always makes a full stroke. As the camshaft turns farther, spring (8) returns the pump plunger and lifter to the bottom of the stroke.When the pump plunger is at the bottom of the stroke, fuel transfer pump pressure goes into inlet passage (1), around the pump barrel and to bypass closed port (3). Fuel fills the area above the pump plunger.After the pump plunger begins the up stroke, fuel will be pushed out the bypass closed port until the top of the pump plunger closes the port. As the pump plunger travels farther up, the pressure of the fuel increases. At approximately 690 kPa (100 psi), check valve (2) opens and lets fuel flow into the fuel injection line to the fuel injection nozzle. When the pump plunger travels farther up, scroll (5) uncovers spill port (4). The fuel above the pump plunger goes through slot (6), along the edge of scroll (5) and out spill port (4) back to the fuel manifold. This is the end of the injection stroke. The pump plunger can have more travel up, but no more fuel will be sent to the fuel injection nozzle.When the pump plunger travels down and uncovers bypass closed port (3), fuel begins to fill the area above the pump plunger again, and the pump is ready to begin another stroke.The amount of fuel the injection pump sends to the injection nozzle is changed by the rotation of the pump plunger. Gear (10) is attached to the pump plunger and is in mesh with fuel rack (9). The governor moves the fuel rack according to the fuel needs of the engine. When the governor moves the fuel rack, and the fuel rack turns the pump plunger, scroll (5) changes the distance the pump plunger pushes fuel between bypass closed port (3) and spill port (4) opening. The longer the distance from the top of the pump plunger to the point where scroll (5) uncovers spill port (4), the more fuel will be injected.To stop the engine, the pump plunger is rotated so that slot (6) on the pump plunger is in line with spill port (4). The fuel will now go out the spill port and not to the injection nozzle.Fuel Injection Nozzle
The fuel injection nozzle goes through the cylinder head into the combustion chamber. The fuel injection pump sends fuel with high pressure to the fuel injection nozzle where the fuel is made into a fine spray for good combustion.
Fuel Injection Nozzle (Typical Illustration)
(1) Carbon dam. (2) Seal. (3) Passage. (4) Filter screen. (5) Orifice. (6) Valve. (7) Diameter. (8) Spring.Seal (2) goes against the cylinder head and prevents leakage of compression from the cylinder. Carbon dam (1) keeps carbon out of the bore in the cylinder head for the nozzle.Fuel with high pressure from the fuel injection pump goes into the inlet passage. Fuel then goes through filter screen (4) and into passage (3) to the area below diameter (7) of valve (6). When the pressure of the fuel that pushes against diameter (7) becomes greater than the force of spring (8), valve (6) lifts up.This occurs when the fuel pressure goes above the Valve Opening Pressure of the fuel injection nozzle. When valve (6) lifts, the tip of the valve comes off the nozzle seat and the fuel will go through orifices (5) into the combustion chamber.The injection of fuel continues until the pressure of fuel against diameter (7) becomes less than the force of spring (8). With less pressure against diameter (7), spring (8) pushes
Parts gasket Volvo Penta:
969011
969011 Gasket
1372, 2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ125B, AQ131A; AQ131B; AQ131C, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, D1-13; D1-13B; D1-20, D11A-A; D11A-B; D11A-C,
947622
947622 Gasket
2001; 2001B; 2001AG, AQ175A, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D
20532891
20532891 Gasket
1372, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A MP; D13C2-A MP; D13C3-A MP, D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAD1340VE; TAD1341VE; TAD1342VE, TAD1341GE;
20405888
20405888 Gasket
D5A-T; D5A-TA; D5A-B TA, D5A-T; D5A-TA; D5A-B TA, TAD520GE; TAD720GE; TAD721GE, TAD520VE; TAD720VE; TAD721VE, TAD550GE; TAD551GE; TAD750GE, TAD650VE; TAD660VE, TAD750VE; TAD760VE, TD420VE; TAD420VE; TAD620VE, TD520GE; TAD530GE; TAD531GE, TD520VE; TD7
20591706
20591706 Gasket
D5A-T; D5A-TA; D5A-B TA, D5A-T; D5A-TA; D5A-B TA, TAD520GE; TAD720GE; TAD721GE, TAD520VE; TAD720VE; TAD721VE, TAD550GE; TAD551GE; TAD750GE, TAD750VE; TAD760VE, TD520GE; TAD530GE; TAD531GE, TD520VE; TD720VE
20531832
20531832 Gasket
TAD520GE; TAD720GE; TAD721GE, TAD520VE; TAD720VE; TAD721VE, TAD550GE; TAD551GE; TAD750GE, TAD560VE; TAD561VE; TAD761VE, TAD650VE; TAD660VE, TAD734GE, TAD750VE; TAD760VE, TD420VE; TAD420VE; TAD620VE, TD520GE; TAD530GE; TAD531GE
21242584
21043318