814304 Gasket Volvo.Penta
AD30A; AQAD30A; MD30A, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ145A; BB145A, AQ175A, AQ190A; AQ240A, AQ200B; AQ225B, AQ200C; AQ200D; AQ225C, AQ200D; AQ200F; 280B, AQ225D; AQ225E; AQ225F, AQ260A; AQ260B; BB260A, AQ290A, MD21B; AQD21B, MD40A;
Gasket
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
Shock for Polaris Ranger 1000 2020-2023 Rear Gas Shock by Race-Driven
Race-Driven Brand New Race-Driven High Quality Gas Shocks || Aftermarket shock engineered and built to the exact dimensions of OEM || Designed to meet or exceed original equipment quality standards for long lasting performance. || Fits: 2020 2021 2022 2023 Polaris Ranger 1000
Race-Driven Brand New Race-Driven High Quality Gas Shocks || Aftermarket shock engineered and built to the exact dimensions of OEM || Designed to meet or exceed original equipment quality standards for long lasting performance. || Fits: 2020 2021 2022 2023 Polaris Ranger 1000
$258.86
21-06-2024
7.14[3.21] pounds
LU: Amazon Global Store
Valeo 814304 Air-Conditioning Installation
Valeo Height [mm]: 318 || Material: Aluminium || Supplementary Article/Info 2: without dryer || Thickness [mm]: 16 || Weight [kg]: 3,76.Width [mm]: 698
Valeo Height [mm]: 318 || Material: Aluminium || Supplementary Article/Info 2: without dryer || Thickness [mm]: 16 || Weight [kg]: 3,76.Width [mm]: 698
Compatible models:
Volvo Penta entire parts catalog list:
AQ115A; AQ115B; AQ130; AQ130A; AQ130B; AQ130C; AQ130D; AQ165A; AQ170A; AQ170B; AQ170C; AQD21A; BB115A; BB115B; BB115C; BB165A; BB170A; BB170B; BB1
- Mechanical Lift Device AQ Drive Unit 250 270 MO-XXX/87999: 814121
- Mechanical Lift Device AQ Drive Unit 250 270 MO-XXX/87999: 814122
- Mechanical Lift Device AQ Drive Unit 250 270 MO-XXX/87999: 839134
- Mechanical Lift Device AQ Drive Unit 250 270 MO-XXX/87999: 839135
- Mechanical Lift Device AQ Drive Unit 270, MOXXXX/88000-: 850381
- Mechanical Lift Device AQ Drive Unit 270, MOXXXX/88000-: 850726
- Mechanical Lift Device AQ Drive Unit 270, MOXXXX/88000-: 839313
- Mechanical Lift Device AQ Drive Unit 270, MOXXXX/88000-: 850382
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850381
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850726
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 839313
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850382
- Mechanical Lift Device AQ Drive Unit 280, MOXXXX/180265-
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850381
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850726
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 839313
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850382
- Mechanical Lift Device AQ Drive Unit 280
- Mechanical Lift Device AQ Drive Unit 280
- Mechanical Lift Device: 850381
- Mechanical Lift Device: 850726
- Mechanical Lift Device: 839313
- Mechanical Lift Device: 850382
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850381
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850726
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 839313
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850382
AQ175A
AQ190A; AQ240A
- Mechanical Lift Device AQ-Drive Unit 280, Earlier Prod
- Mechanical Lift Device AQ Drive Unit 280, Later Prod
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod: 839415
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod: 850381
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod: 850726
- Mechanical Lift Device AQ Drive Unit 280, Later Prod
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod
- Mechanical Lift Device AQ Drive Unit 280, Later Prod
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod
- Mechanical Lifting Device AQ Drive Unit 280, Later Prod
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod
- Mechanical Lifting Device AQ Drive Unit 280, Later Prod
- Mechanical Lifting Device AQ Drive Unit 280 L
- Mechanical Lifting Device AQ Drive Unit 275
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod
- Mechanical Lifting Device AQ Drive Unit 280, Later Prod
- Mechanical Lifting Device AQ Drive Unit 280 L
- Mechanical Lifting Device AQ Drive Unit 275
- Mechanical Lift Device AQ Drive Unit 280 Earlier Prod
- Mechanical Lifting Device AQ Drive Unit 280, Later Prod
- Mechanical Lift Device: 850381
- Mechanical Lift Device: 850726
- Mechanical Lift Device: 839313
- Mechanical Lift Device: 850382
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850381
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850726
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 839313
- Mechanical Lift Device AQ Drive Unit 280, MO-XXXX/180264: 850382
- Mechanical Lift Device AQ Drive Unit 280, MOXXXX/180265-
Information:
Active Event Codes
An active event code represents a problem with engine operation. Correct the problem as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Illustration 1 is an example of the operating range of a temperature sensor. Do not use the Illustration to troubleshoot temperature sensors.
Illustration 1 g01138880
Example of the typical operating range of a temperature sensor
(1) This area represents the normal operating range of the parameter. The normal output voltage of the sensor is between 0.2 VDC and 4.2 VDC.
(2) In this area, the temperature above 107 °C (225 °F) is higher than normal. The output voltage of the sensor will generate an event code. The sensor does not have an electronic problem.
(3) In these areas, the output voltage of the sensor is too high or too low. The voltage is outside of the normal range. The electronic problem will generate a diagnostic code. Refer to Troubleshooting, "Troubleshooting with a Diagnostic Code" for additional information on diagnostic codes. Events are represented in two formats. In the first format, the "E" identifies the code as an event code. The "XXX" represents a numeric identifier for the event code. This is followed by a description of the code. If a warning, a derate, or a shutdown is applicable, the numeric identifiers are different. Refer to the following example:
E004 Engine Overspeed ShutdownIn the second format, the "E" identifies the code as an event code. The "XXX-X" represents a numeric identifier for the event code. The fourth "X" identifies the event as a warning, a derate, or a shutdown. This is followed by a description of the code. Refer to the following example:
E360-1 Low Oil Pressure Warning
E360-2 Low Oil Pressure Derate
E360-3 Low Oil Pressure ShutdownThe definition for a warning, a derate, and a shutdown are defined below:Warning - This condition represents a serious problem with engine operation. However, this condition does not require a derate or a shutdown.Derate - For this condition, the Electronic Control Module (ECM) reduces the engine's power in order to help prevent possible engine damage.Shutdown - For this condition, the ECM shuts down the engine in order to help prevent possible engine damage.Logged Event Codes
When the ECM generates an event code the ECM logs the code in permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent problems. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the problem which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint:
Determine the time that the event occurred.
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This is very important for problems that are intermittent. Refer to Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the problem, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.Trip Points for the Monitoring System
The monitoring system determines the level of action that is taken by the ECM in response to a condition that can damage the engine. When any of these conditions occur, the appropriate event code will trip.Table 1 contains the conditions that are monitored and the default trip points for each condition. Each condition has an associated parameter. The settings for each parameter can be viewed with the Caterpillar Electronic Technician (ET). The trip points for some of the parameters may be adjustable with Cat ET.
Table 1
Monitoring System Parameters
Parameter Action Delay Time in Seconds Trip Point Default State
Min Max Default Min Max Default
E096-1 High Fuel Pressure Warning N/A N/A 8 N/A N/A 758 kPa (110 psi) On
E172-1 High Air Filter Restriction Warning N/A N/A software dependent N/A N/A 8 kPa (1 psi) On
E172-2 High Air Filter Restriction Derate (1) N/A N/A software dependent N/A N/A 8 kPa (1 psi) On
E194 High Exhaust Temperature Derate N/A N/A N/A N/A N/A Software dependent On
E265 User Defined Shutdown Shutdown N/A N/A N/A N/A N/A On/Off
E360-1 Low Engine Oil Pressure Warning N/A N/A 8 N/A N/A Map dependent value(2).
An active event code represents a problem with engine operation. Correct the problem as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Illustration 1 is an example of the operating range of a temperature sensor. Do not use the Illustration to troubleshoot temperature sensors.
Illustration 1 g01138880
Example of the typical operating range of a temperature sensor
(1) This area represents the normal operating range of the parameter. The normal output voltage of the sensor is between 0.2 VDC and 4.2 VDC.
(2) In this area, the temperature above 107 °C (225 °F) is higher than normal. The output voltage of the sensor will generate an event code. The sensor does not have an electronic problem.
(3) In these areas, the output voltage of the sensor is too high or too low. The voltage is outside of the normal range. The electronic problem will generate a diagnostic code. Refer to Troubleshooting, "Troubleshooting with a Diagnostic Code" for additional information on diagnostic codes. Events are represented in two formats. In the first format, the "E" identifies the code as an event code. The "XXX" represents a numeric identifier for the event code. This is followed by a description of the code. If a warning, a derate, or a shutdown is applicable, the numeric identifiers are different. Refer to the following example:
E004 Engine Overspeed ShutdownIn the second format, the "E" identifies the code as an event code. The "XXX-X" represents a numeric identifier for the event code. The fourth "X" identifies the event as a warning, a derate, or a shutdown. This is followed by a description of the code. Refer to the following example:
E360-1 Low Oil Pressure Warning
E360-2 Low Oil Pressure Derate
E360-3 Low Oil Pressure ShutdownThe definition for a warning, a derate, and a shutdown are defined below:Warning - This condition represents a serious problem with engine operation. However, this condition does not require a derate or a shutdown.Derate - For this condition, the Electronic Control Module (ECM) reduces the engine's power in order to help prevent possible engine damage.Shutdown - For this condition, the ECM shuts down the engine in order to help prevent possible engine damage.Logged Event Codes
When the ECM generates an event code the ECM logs the code in permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent problems. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the problem which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint:
Determine the time that the event occurred.
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This is very important for problems that are intermittent. Refer to Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the problem, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.Trip Points for the Monitoring System
The monitoring system determines the level of action that is taken by the ECM in response to a condition that can damage the engine. When any of these conditions occur, the appropriate event code will trip.Table 1 contains the conditions that are monitored and the default trip points for each condition. Each condition has an associated parameter. The settings for each parameter can be viewed with the Caterpillar Electronic Technician (ET). The trip points for some of the parameters may be adjustable with Cat ET.
Table 1
Monitoring System Parameters
Parameter Action Delay Time in Seconds Trip Point Default State
Min Max Default Min Max Default
E096-1 High Fuel Pressure Warning N/A N/A 8 N/A N/A 758 kPa (110 psi) On
E172-1 High Air Filter Restriction Warning N/A N/A software dependent N/A N/A 8 kPa (1 psi) On
E172-2 High Air Filter Restriction Derate (1) N/A N/A software dependent N/A N/A 8 kPa (1 psi) On
E194 High Exhaust Temperature Derate N/A N/A N/A N/A N/A Software dependent On
E265 User Defined Shutdown Shutdown N/A N/A N/A N/A N/A On/Off
E360-1 Low Engine Oil Pressure Warning N/A N/A 8 N/A N/A Map dependent value(2).
Parts gasket Volvo Penta:
947620
947620 Gasket
2001; 2001B; 2001AG, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQD70D; TAMD70D; TAMD70E, D1-13; D1-13B; D1-20, D100A; D100AK; D100B, D100BHC; D100BRC; TD100AHC, D120A; D120AK; TD120A, D12D-A MG; D
957173
957173 Gasket
2001; 2001B; 2001AG, AD30A; AQAD30A; MD30A, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ145A; BB145A, AQ225D; AQ225E; AQ225F, AQ260A; AQ260B; BB260A, AQD70D; TAMD70D; TAMD70E, D100A; D100AK; D100B, D100BHC; D100BRC; TD100AHC, D120A; D120AK; TD12
859038
859038 Gasket
AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, KAD32P; TAMD42WJ-A; KAD43P-A, KAD42A; KAMD42A; HS1A, KAD42B; KAMD42B; TAMD42B, KAD42P-A; KAMD42P-A; HS1A, MD31A; TMD31A; TMD31B, MD31A; TMD31B; TAMD31B, M
940096
940096 Gasket
230A; 230B; 250A, 251A, 430; 430A; 430B, 740A; BB740A, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ125B, AQ131A; AQ131B; AQ131C, AQ145A; BB145A, AQ14
1542123
832669
832669 Gasket
230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ125B, AQ131A; AQ131B; AQ131
430039
461618