889455 Volvo.Penta Gasket


889455 Gasket Volvo.Penta DPH-A; TSK DPH-B; TSK DPH-A, DPH-D; DPR-D; DPH-D1 Gasket
889455 Gasket Volvo Penta
Rating:
88

Buy Gasket 889455 Volvo Penta genuine, new aftermarket parts with delivery
Number on catalog scheme: 23
 

Compatible models:

Information:


Illustration 1 g01025403
Cooling System Schematic
(A) Sea Water
(B) Engine Coolant
(1) Fuel Cooler (if equipped)
(2) Auxiliary Water Pump
(3) Aftercooler
(4) Heat Exchanger
(5) Marine Gear Cooler (if equipped)
(6) Water cooled Exhaust Elbow (if equipped)
(7) Water Pump
(8) Engine Oil Cooler
(9) Cylinder Block and Cylinder Head
(10) Turbocharger
(11) Exhaust Manifold
(12) Water Temperature Regulator
(13) Expansion Tank
(14) Coolant Recovery Bottle
(15) Shunt Line (if equipped) Above normal coolant temperatures can be caused by many conditions. Use the following procedure to determine the cause of above normal coolant temperatures:
Personal injury can result from escaping fluid under pressure.If a pressure indication is shown on the indicator, push the release valve in order to relieve pressure before removing any hose from the radiator.
Check the coolant level in the cooling system. Refer to Operation and Maintenance Manual, "Cooling System Coolant Level - Check". If the coolant level is too low, air will get into the cooling system. Air in the cooling system will cause a reduction in coolant flow and bubbles in the coolant. Air bubbles cause a reduction in the cooling of engine parts.
Check the quality of the coolant. The coolant should have the following properties:
Color that is similar to new coolant
Odor that is similar to new coolant
Free from dirt and debrisIf the coolant does not have these properties, drain the system and flush the system. Refill the cooling system with the correct mixture of water, antifreeze, and coolant conditioner. Refer to Operation and Maintenance Manual, "Refill Capacities and Recommendations".
Check the coolant mixture of antifreeze, water, and conditioner. The mixture should be approximately half water and half antifreeze. The coolant conditioner should be approximately three percent of the total mixture. Refer to Operation and Maintenance Manual, "Refill Capacities and Recommendations". If the coolant mixture is incorrect, drain the cooling system and flush the cooling system. Refill the cooling system with the correct mixture of water and antifreeze.
Check for air in the cooling system. Air can enter the cooling system in different ways. The following items are some of the most common causes for air in the cooling system:
Filling the cooling system incorrectly
Combustion gas leakage into the cooling system
Loose hose clampCombustion gas can get into the system through the following conditions: inside cracks, damaged cylinder head and damaged cylinder head gasket. A loose hose clamp can allow air into the cooling system during the cooldown period. Air in the cooling system causes a reduction in the cooling capacity of the coolant. The following procedure can be used to purge air from the cooling system.
Fill the cooling system. Avoid filling the cooling system faster than 19 liters per minute.
Allow the filled cooling system to become level.
Remove the radiator cap and start the engine. Run the engine at low idle for two minutes.
Check the coolant level. Add coolant in order to fill the system, as needed.
Run the engine at low idle for 2 minutes while the radiator cap is removed. Then, slowly run the engine up to high idle. Run the engine at high idle for 2 minutes in order to reach a normal operating temperature.
Check the coolant level. As needed, add coolant in order to fill the system.
Repeat steps 4.e and 4.f until no air is left in the cooling system. Note: If the engine is equipped with a water cooled turbocharger, special care must be taken in order to remove the air from the turbocharger. If air is trapped in the turbocharger a hot spot will be created. A hot spot could cause failure of the turbocharger.
It may be necessary to open the vent lines for coolant from the turbocharger in order to purge the air from the entire cooling system. Slightly open the vent lines and start the engine at low idle. Run the engine at low idle until some coolant begins to flow from the lines. Tighten the vent lines.
Reinstall the radiator cap.
Check the water temperature gauge. A water temperature gauge which does not work correctly will not show the correct temperature. Refer to Testing and Adjusting, "Cooling System - Test".
Check the sending unit. In some conditions, the temperature sensor in the engine sends signals to a sending unit. The sending unit converts these signals to an electrical impulse which is used by a mounted gauge. If the sending unit malfunctions, the gauge can show an incorrect reading. Also if the electric wire breaks or if the electric wire shorts out, the gauge can show an incorrect reading.
Check the heat exchanger. The condition of the sea water that is circulated through the heat exchanger and the amount of operating time of the vessel can decrease the effectiveness of the heat exchanger. Operating in water that contains the following types of debris will adversely affect the heat exchanger system: silt, sediment, salt and algae. In addition, intermittent use of the vessel will adversely affect the heat exchanger system. Refer to Operation and Maintenance Manual, "Heat Exchanger - Inspect".
Check the coolant recovery system. Coolant must flow freely to the recovery bottle during the warm up cycle and coolant must flow back to the expansion tank during the cool down cycle. Check the hose that connects the recovery bottle to the expansion tank. The hose must not leak and the hose must not draw in air. If either of these conditions exist, the system will not function properly.
Check the filler cap. A pressure drop in the cooling system can cause the boiling point to be lower. This can cause the cooling system to boil. Refer to Testing and Adjusting, "Cooling System - Test".
Check the cooling system hoses and clamps. Damaged hoses with leaks can normally be seen. Hoses that have no visual leaks can soften during operation. The soft areas of the hose can become kinked or crushed during operation. These areas of the hose can cause a restriction in the coolant flow. Hoses can become soft. Also, hoses can get cracks after a period of time. The inside of a hose can deteriorate, and the loose particles of the hose can cause a restriction of the coolant flow. Refer to Operation and Maintenance


Parts gasket Volvo Penta:

3862249
 
3862249 Gasket
DPH-A; TSK DPH-B; TSK DPH-A, DPH-D; DPR-D; DPH-D1
Back to top