21503575 Volvo.Penta Sealing ring


21503575 Sealing ring Volvo.Penta TAD1140VE; TAD1141VE; TAD1142VE, TAD1150VE; TAD1151VE; TAD1152VE, TAD1170VE; TAD1171VE; TAD1172VE, TAD1340VE; TAD1341VE; TAD1342VE, TAD1350VE, TAD1640GE; TAD1641GE; TAD1642GE, TAD1641VE; TAD1642VE; TAD1643VE, TAD1643VE-B, TAD1650VE-B; TAD1650VE-B/51V Sealing
21503575 Sealing ring Volvo Penta
Rating:
18

Buy Sealing ring 21503575 Volvo Penta genuine, new aftermarket parts with delivery
Number on catalog scheme: 48
 

Volvo Penta entire parts catalog list:

TAD1140VE; TAD1141VE; TAD1142VE; TAD1140-42VE
TAD1150VE; TAD1151VE; TAD1152VE; TAD1150-52VE
TAD1170VE; TAD1171VE; TAD1172VE; TAD1170-72VE
TAD1340VE; TAD1341VE; TAD1342VE; TAD1343VE; TAD1344VE; TAD1345VE; TAD1360VE; TAD1361VE; TAD1362VE; TAD1363VE; TAD1364VE; TAD1365VE; TAD1360-
TAD1350VE
TAD1640GE; TAD1641GE; TAD1642GE; TAD1650GE; TAD1651GE; TWD1643GE; TWD1652GE; TWD1653GE; TWD1663GE
TAD1641VE; TAD1642VE; TAD1643VE; TAD1650VE; TAD1660VE; TAD1661VE; TAD1662VE; TAD1640VE-B; TAD1641VE-B; TAD1642VE-B; TAD1660-62VE; TAD1662VE
TAD1643VE-B
TAD1650VE-B; TAD1650VE-B/51VE; TAD1651VE
TAD1670VE; TAD1671VE; TAD1672VE; TAD1670-72VE
TWD1672GE; TWD1673GE; TWD1672-1673GE

Information:


Illustration 1 g03823329
(1) Inlet Valves
(2) Exhaust Valves
(3) Water Cooled Exhaust Manifold
(4) Water Inlet for the Aftercooler
(5) Water Outlet for the aftercooler
(6) Aftercooler
(7) Air Inlet
(8) Exhaust Outlet
(9) Compressor
(10) Turbine
(11) Air Cleaner The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The components of the air inlet and exhaust system are the following components:
Air cleaner
Turbocharger
Aftercooler
Cylinder head
Valves and valve system components
Piston and cylinder
Water Cooled Exhaust manifold Inlet air is pulled through the air cleaner (11) into air inlet (7) by turbocharger compressor wheel (9). The air is compressed and heated to about 200° C (392° F) before the air is forced to the aftercooler (6). As the air flows through the aftercooler, the temperature of the compressed air lowers to about 43 °C (110 °F). Cooling of the inlet air increases combustion efficiency. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased horsepower outputFrom the aftercooler, air is forced into the inlet manifold. Air flow from the inlet chambers into the cylinders is controlled by inlet valves (1). There are two inlet valves and two exhaust valves (2) for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is pulled into the cylinder. The inlet valves close and the piston begins to move up on the compression stroke. The air in the cylinder is compressed. When the piston is near the top of the compression stroke, fuel is injected into the cylinder. The fuel mixes with the air and combustion starts. During the power stroke, the combustion force pushes the piston downward. The exhaust valves open and the exhaust gases are pushed through the exhaust port into water-cooled exhaust manifold (3) as the piston rises on the exhaust stroke. After the exhaust stroke, the exhaust valves close and the cycle starts again. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustExhaust gases from water-cooled exhaust manifold (3) enter the turbine side of the turbocharger in order to turn turbocharger turbine wheel (10). The turbine wheel is connected to the shaft that drives the compressor wheel. Exhaust gases from the turbocharger pass through exhaust outlet (8), a muffler, and an exhaust stack.Turbocharger
Illustration 2 g03823382
Water-cooled turbocharger
(1) Air inlet
(2) Exhaust outlet
(3) Exhaust inlet
(4) Compressor housing
(5) Compressor wheel
(6) Bearing
(7) Oil Inlet port
(8) Bearing
(9) Water-cooled turbine housing
(10) Turbine wheel
(11) Oil outlet port All of the air that enters the engine passes through the turbocharger. All of the exhaust gases from the engine pass through the turbocharger.The exhaust gases enter water-cooled turbine housing (9) through exhaust inlet (3). The housing of the turbochargers turbine is water cooled. This prevents the heat of the exhaust gases from radiating into the environment that surrounds the engine. The exhaust gas pushes the blades of the turbine wheel (10). The turbine wheel is connected by a shaft to the compressor wheel (5).Air that passes through the air filters enters the compressor housing air inlet (1) by the rotation of compressor wheel (5). The compressor wheel causes the inlet air to be pushed into the inlet side of the engine. Boost pressure is caused when the compressor wheel pushes more air into the inlet side of the engine. This results in a positive inlet manifold pressure that exceeds atmospheric pressure. This allows the engine to burn more fuel. When the engine burns more fuel, the engine produces more power.When the throttle is opened, more fuel is injected into the cylinders. The combustion of this additional fuel produces greater exhaust temperature. The additional exhaust temperature causes the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, more air is forced into the cylinders. The increased flow of air gives the engine more power by allowing the engine to burn the additional fuel with greater efficiency.Bearings (6) and (8) for the turbocharger use engine oil under pressure for lubrication and cooling. The oil comes in through oil inlet port (7). The oil then goes through passages in the center section in order to lubricate the bearings. This oil also cools the bearings. Oil from the turbocharger goes out through oil outlet port (11) in the bottom of the center section. The oil then goes back to the engine oil pan.
Illustration 3 g03823388
Turbocharger with wastegate
(12) Canister
(13) Actuating lever
(14) Line (boost pressure) The operation of the wastegate is controlled by the boost pressure. At high boost pressures, the wastegate opens in order to decrease boost pressure. At low boost pressure, the wastegate closes in order to increase boost pressure. When the engine is operating under conditions of low boost, a spring pushes a diaphragm in canister (12). This action moves actuating lever (13) in order to close the valve of the wastegate. Closing the valve of the wastegate allows the turbocharger to operate at maximum performance.As the boost pressure through line (14) increases against the diaphragm in canister (12), the valve of the wastegate is opened. When the valve of the wastegate is opened, the rpm of the turbocharger is limited by bypassing a portion of the exhaust gases. The exhaust gases are routed through the wastegate which bypasses the turbine wheel of the turbocharger.Note: The turbocharger with a wastegate is preset at the factory and no adjustment can be made.Bearings (6) and (8) for the turbocharger use engine oil under pressure for lubrication and cooling. The oil comes in through oil inlet port (7). The oil then goes through passages in the center section in order to lubricate the bearings. This oil also cools the bearings. Oil from the turbocharger goes out through oil outlet port (11) in the bottom of the center section. The oil then goes back to the engine oil pan. Valve System Components
Illustration 4 g03823568
(15) Rocker arm
(16) Pushrod
(17) Valve bridge
(18) Valve spring
(19) Valve
(20) Lifter The valve system components


Parts sealing Volvo Penta:

1676432
Sealing ring
1676432 Sealing ring
AD31L-A; AD31P-A; AD41L-A, DH10A; DH10A 285; DH10A 360, KAD32P; TAMD42WJ-A; KAD43P-A, KAD42P-A; KAMD42P-A; HS1A, TAD1030G; TD1010G; TWD1010G, TAD1230G; TD1210G; TWD1210G, TAD1630P; TWD1630P; TWD1630PP, TAD1640GE; TAD1641GE; TAD1642GE, TAMD103A, TAMD1
20804638
Sealing strip
20804638 Sealing strip
D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D9A2A; D9A2A MG; D9A2A D9A-MG, TAD1140VE; TAD1141VE; TAD1142VE, TAD1150VE; TAD1151VE; TAD1152VE, TAD1170VE; TAD1171VE; TAD1172VE, TAD940GE; TAD941GE
1547252
Sealing ring
1547252 Sealing ring
1372, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13B-J MP; D13B-M MP, D13C1-A MP; D13C2-A MP; D13C3-A MP, D16C-
1547253
Sealing ring
1547253 Sealing ring
1372, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13B-J M
1547254
Sealing ring
1547254 Sealing ring
1372, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A
20479636
Sealing strip
20479636 Sealing strip
1372, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D11B3-A MP; D11B4-A MP, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A MP; D13C2-A MP; D13C3-A MP, D9A2A; D9A2A D9-425; D9A2A
1675066
Sealing ring
1675066 Sealing ring
1372, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAD1140VE; TAD1141VE; TAD1142VE, TAD1150VE; TAD1151VE; TAD1152VE, TAD1170VE; TAD1171VE; TAD1172VE, TAD1340VE; TAD1341VE; TAD1342VE, TA
20736230
Sealing strip
20736230 Sealing strip
D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAD1640GE; TAD1641GE; TAD1642GE, TAD1641VE; TAD1642VE; TAD1643VE, TAD1643VE-B, TAD1650VE-B; TAD1650VE-B/51VE; TAD1651VE, TAD1670VE; TAD1671VE; TAD1672VE, TWD1672GE; TWD1673GE; TWD1672-1673GE
Back to top