847573 Sealing strip Volvo.Penta
AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, KAD32P; TAMD42WJ-A; KAD43P-A, KAD42A; KAMD42A; HS1A, KAD42B; KAMD42B; TAMD42B, KAD42P-A; KAMD42P-A; HS1A, MD31A; TMD31A; TMD31B, MD31A; TMD31B; TAMD31B, TMD41A; TMD41B; D41A, TM
Sealing
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
WgxzXyl Flexible Sealing Strip 847573 for Aftercooler AD31 41 / KAD32 42 / KAMD42 43/MD31/ SP-A / TAMD31 41 42 / TMD31 41 Replace Parts
WgxzXyl Scope of application: Designed for a variety of engine models, including AD31, 41, KAD32, 42, KAMD42, 43, MD31, SP-A, TAMD31, 41, 42, TMD31, 41. || Function: The sealing strip is used to prevent leakage and ensure the sealing of the cooling system or related components. || Material: Usually made of flexible and high temperature resistant materials to adapt to different installation environments and requirements. || Model matching: Applicable to model 847573, ensuring compatibility with related engines and cooling systems. || Maintenance recommendations: Regularly check the status of the sealing strip to ensure that there is no aging or damage to prevent leakage and maintain the normal operation of the system.
WgxzXyl Scope of application: Designed for a variety of engine models, including AD31, 41, KAD32, 42, KAMD42, 43, MD31, SP-A, TAMD31, 41, 42, TMD31, 41. || Function: The sealing strip is used to prevent leakage and ensure the sealing of the cooling system or related components. || Material: Usually made of flexible and high temperature resistant materials to adapt to different installation environments and requirements. || Model matching: Applicable to model 847573, ensuring compatibility with related engines and cooling systems. || Maintenance recommendations: Regularly check the status of the sealing strip to ensure that there is no aging or damage to prevent leakage and maintain the normal operation of the system.
Compatible models:
Volvo Penta entire parts catalog list:
AD31L-A; AD31P-A; AD41L-A; AD41P-A; D41L-A; TAMD31L-A; TAMD31M-A; TAMD31P-A; TAMD31S-A; TAMD41H-A; TAMD41H-B; TAMD41P-A; TAMD41L-A; TAMD41M-A
AD41D; D41D; TAMD41D; TMD41D; HS1A
KAD32P; TAMD42WJ-A; KAD43P-A; KAMD43P; KAMD43P-A; KAMD43P-B; KAD44P; KAD44P-B; KAD44P-C; KAMD44P-A; KAMD44P-C; KAD300-A; KAMD300-A; HS1A; HS1E
- Aftercooler
- Aftercooler: A
- Aftercooler: B
- Aftercooler: C
- Aftercooler: A
- Aftercooler: B
- Repair Kits: A
- Repair Kits: B
- Repair Kits: C
- Repair Kits
KAD42B; KAMD42B; TAMD42B
KAD42P-A; KAMD42P-A; HS1A
MD31A; TMD31A; TMD31B; TAMD31A; TAMD31B; AD31; AQAD31A; AD31B; 290A; DP-A; DP-B; DP-A1; DP-B1; SP-A; SP-A1
- After Cooler and Installation Components
- After Cooler and Installation Components: A
- After Cooler and Installation Components: B
- After Cooler and Installation Components: C
- After Cooler and Installation Components
- After Cooler and Installation Components: A
- After Cooler and Installation Components: B
- Repair Kits: C
- Repair Kits: TAMD31ASOLAS
- Repair Kits: B
- Repair Kits: C
- Repair Kits
- After Cooler and Installation Components: A
- After Cooler and Installation Components: B
- Repair Kits: C
- Repair Kits: D
- After Cooler with Installation Components: A
- After Cooler with Installation Components: B
- After Cooler with Installation Components: C
- After Cooler and Installation Components
- After Cooler with Installation Components: A
- After Cooler with Installation Components: B
- Repair Kits: TAMD41ASOLAS
- Repair Kits: B
- Repair Kits: D
Information:
High/Low Logic Circuit
Illustration 1 g00487533
System Schematic For Spare Output
When used as a high/low logic circuit.
The spare output on the GSC is strictly used for the customer. The spare output is programmed to activate under a variety of conditions. The default is set for the output to activate when the engine is in the cooldown (SP11 = 7). The GSC treats this diagnostic code as a alarm fault. For more information, see Systems Operation, "Spare Input/Output Programming OP6". The responsibility of documenting any connections to this spare output falls on the customer and/or the dealer. Also, The responsibility of troubleshooting any connections to this spare output falls on the customer and/or the dealer. The voltage on the spare output is approximately 3.0 DCV when the spare output is not active. The voltage is approximately 3.0 DCV when there are no connections to the spare output. When the spare output is active, the voltage on the spare output is approximately 0 volts. The spare output is capable of drawing (sinking) approximately 100 mA.ProcedureThe following condition could be a possible cause of a CID 334 FMI 4.
A short to the ground ("B-") of the signal for the spare output is present.Troubleshooting of a spare output fault is direct. The FMI defines the diagnostic code. FMI 4 is a short to ground. In order to find the exact cause of the diagnostic code, use the following information: the FMI, the system schematic for the spare output and the documentation that is provided by the dealer and/or the customerSerial Data Link
Illustration 2 g00487536
System Schematic For Spare Output
When used as a serial data link.
The GSC communicates with the relay driver module (RDM) by a serial data link. The serial data link is enabled when the setpoint SP11 is 9. For more information, see Systems Operation, "Spare Input/Output Programming OP6".Note: Earlier 103-6177 113-4500 117-6200 120-6880 123-6004 136-3870 EMCP Electronic Controls do not have the RDM serial data link capability.When the data link malfunctions, R1 output (terminal 2 of the RDM) will be activated on and off at a rate of 0.5 Hz. Relays "R2" through "R9" will maintain the current states or the relays will default to OFF. This is controlled by a jumper between terminals 6 and 7 of the RDM. If a jumper is NOT present when the serial data link has a fault, the relay outputs ("R2" through "R9") will maintain the current states. If the jumper is present, "R2" through "R9" will default to OFF. Note: The maximum distance between a module and the GSC is 305 m (1000 ft). If this specification is not met, it is possible for the data link to malfunction. Also, a diagnostic code of CID 334 could occur. If the distance is not in compliance with the specification, shorten the distance between the RDM and the GSC.Note: Faults are created when the harness connector (40 contact) is disconnected from the GSC during these troubleshooting procedures. Clear these created diagnostic codes after the particular diagnostic code is corrected. In a properly operating system, when the harness connector is removed from the GSC, the following diagnostic codes are recorded:
CID 100 FMI 2 pressure sensor (engine oil)
CID 110 FMI 2 temperature sensor (engine coolant)
CID 111 FMI 3 fluid level sensor (engine coolant)
CID 190 FMI 3 speed sensor (engine)
CID 336 FMI 2 switch (engine control)ProcedureThe following condition could be a possible cause of a CID 334 FMI 4.
A short to the ground of the signal for the data is present.The GSC is not able to detect an open circuit condition of the data link for the relay driver module. Clear the diagnostic code from the fault log after troubleshooting is complete.
Check the voltage of the signal for the data.
At the RDM, measure the DC voltage from terminal 4 (positive meter lead) to terminal 7 (negative meter lead). Expected Result: The voltage should change constantly. The voltage should change within the range of 0 to 10 DCV.Results:
OK - The voltage measurement is correct. Proceed to 3.
NOT OK - The voltage measurement is NOT correct. Proceed to 2.
Check the voltage of RDM and the GSC.
At the RDM, disconnect all wires from terminal 4.
Disconnect the harness connector from the GSC.
At the RDM, measure the DC voltage from terminal 4 (positive meter lead) to terminal 7 (negative meter lead). Voltage should be 11.6 0.5 DCV.
Measure the voltage from the contact 36 of the GSC to the ground ("B-") terminal of the relay module. The voltage should change constantly. The voltage should change within the range of 0 to 5.5 DCV. Expected Result: For 2c, the voltage should be 11.6 0.5 DCV. For 2d, the voltage should change constantly. The voltage should change within the range of 0 to 5.5 DCV. Results:
OK - Both voltage measurements are correct. Proceed to 3.
NOT OK - Voltage measured at the RDM is NOT correct. Replace the RDM. STOP.
NOT OK - Voltage measured at the GSC is NOT correct. Replace the GSC. STOP.
Check for the short in the harness.
Disconnect the harness connector from the GSC.
At the RDM, remove wire 1-PK(Pink) from terminal 4.
Measure the resistance from the wire at RDM terminal 4 to the positive battery ("B+") terminal of the relay module on the rear of the GSC.
Measure the resistance from the wire at RDM terminal 4 to ground ("B-") terminal of the relay module on the rear of the GSC. Expected Result: Both measurements should be greater than 20000 ohms. Results:
OK - Both resistance measurements are correct. Check the electrical connectors, terminals and wiring. See Testing And Adjusting, "Electrical Connector - Inspect". If the diagnostic code still exists after the inspection, replace the RDM. STOP.
NOT OK - Either one or both of the resistance measurements are NOT correct. The harness wiring with the incorrect resistance measurement is shorted. Troubleshoot and repair the faulty harness wiring between the RDM and the GSC. See the preceding System Schematic. STOP.
Illustration 1 g00487533
System Schematic For Spare Output
When used as a high/low logic circuit.
The spare output on the GSC is strictly used for the customer. The spare output is programmed to activate under a variety of conditions. The default is set for the output to activate when the engine is in the cooldown (SP11 = 7). The GSC treats this diagnostic code as a alarm fault. For more information, see Systems Operation, "Spare Input/Output Programming OP6". The responsibility of documenting any connections to this spare output falls on the customer and/or the dealer. Also, The responsibility of troubleshooting any connections to this spare output falls on the customer and/or the dealer. The voltage on the spare output is approximately 3.0 DCV when the spare output is not active. The voltage is approximately 3.0 DCV when there are no connections to the spare output. When the spare output is active, the voltage on the spare output is approximately 0 volts. The spare output is capable of drawing (sinking) approximately 100 mA.ProcedureThe following condition could be a possible cause of a CID 334 FMI 4.
A short to the ground ("B-") of the signal for the spare output is present.Troubleshooting of a spare output fault is direct. The FMI defines the diagnostic code. FMI 4 is a short to ground. In order to find the exact cause of the diagnostic code, use the following information: the FMI, the system schematic for the spare output and the documentation that is provided by the dealer and/or the customerSerial Data Link
Illustration 2 g00487536
System Schematic For Spare Output
When used as a serial data link.
The GSC communicates with the relay driver module (RDM) by a serial data link. The serial data link is enabled when the setpoint SP11 is 9. For more information, see Systems Operation, "Spare Input/Output Programming OP6".Note: Earlier 103-6177 113-4500 117-6200 120-6880 123-6004 136-3870 EMCP Electronic Controls do not have the RDM serial data link capability.When the data link malfunctions, R1 output (terminal 2 of the RDM) will be activated on and off at a rate of 0.5 Hz. Relays "R2" through "R9" will maintain the current states or the relays will default to OFF. This is controlled by a jumper between terminals 6 and 7 of the RDM. If a jumper is NOT present when the serial data link has a fault, the relay outputs ("R2" through "R9") will maintain the current states. If the jumper is present, "R2" through "R9" will default to OFF. Note: The maximum distance between a module and the GSC is 305 m (1000 ft). If this specification is not met, it is possible for the data link to malfunction. Also, a diagnostic code of CID 334 could occur. If the distance is not in compliance with the specification, shorten the distance between the RDM and the GSC.Note: Faults are created when the harness connector (40 contact) is disconnected from the GSC during these troubleshooting procedures. Clear these created diagnostic codes after the particular diagnostic code is corrected. In a properly operating system, when the harness connector is removed from the GSC, the following diagnostic codes are recorded:
CID 100 FMI 2 pressure sensor (engine oil)
CID 110 FMI 2 temperature sensor (engine coolant)
CID 111 FMI 3 fluid level sensor (engine coolant)
CID 190 FMI 3 speed sensor (engine)
CID 336 FMI 2 switch (engine control)ProcedureThe following condition could be a possible cause of a CID 334 FMI 4.
A short to the ground of the signal for the data is present.The GSC is not able to detect an open circuit condition of the data link for the relay driver module. Clear the diagnostic code from the fault log after troubleshooting is complete.
Check the voltage of the signal for the data.
At the RDM, measure the DC voltage from terminal 4 (positive meter lead) to terminal 7 (negative meter lead). Expected Result: The voltage should change constantly. The voltage should change within the range of 0 to 10 DCV.Results:
OK - The voltage measurement is correct. Proceed to 3.
NOT OK - The voltage measurement is NOT correct. Proceed to 2.
Check the voltage of RDM and the GSC.
At the RDM, disconnect all wires from terminal 4.
Disconnect the harness connector from the GSC.
At the RDM, measure the DC voltage from terminal 4 (positive meter lead) to terminal 7 (negative meter lead). Voltage should be 11.6 0.5 DCV.
Measure the voltage from the contact 36 of the GSC to the ground ("B-") terminal of the relay module. The voltage should change constantly. The voltage should change within the range of 0 to 5.5 DCV. Expected Result: For 2c, the voltage should be 11.6 0.5 DCV. For 2d, the voltage should change constantly. The voltage should change within the range of 0 to 5.5 DCV. Results:
OK - Both voltage measurements are correct. Proceed to 3.
NOT OK - Voltage measured at the RDM is NOT correct. Replace the RDM. STOP.
NOT OK - Voltage measured at the GSC is NOT correct. Replace the GSC. STOP.
Check for the short in the harness.
Disconnect the harness connector from the GSC.
At the RDM, remove wire 1-PK(Pink) from terminal 4.
Measure the resistance from the wire at RDM terminal 4 to the positive battery ("B+") terminal of the relay module on the rear of the GSC.
Measure the resistance from the wire at RDM terminal 4 to ground ("B-") terminal of the relay module on the rear of the GSC. Expected Result: Both measurements should be greater than 20000 ohms. Results:
OK - Both resistance measurements are correct. Check the electrical connectors, terminals and wiring. See Testing And Adjusting, "Electrical Connector - Inspect". If the diagnostic code still exists after the inspection, replace the RDM. STOP.
NOT OK - Either one or both of the resistance measurements are NOT correct. The harness wiring with the incorrect resistance measurement is shorted. Troubleshoot and repair the faulty harness wiring between the RDM and the GSC. See the preceding System Schematic. STOP.
Parts sealing Volvo Penta:
827247
827247 Sealing ring
2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 3.0GLM-C; 3.0GLP-C, 3.0GLP-A; 3.0GLP-B; 3.0GLM-A, 3.0GSMBYMCE; 3.0GSPBYCCE, 3.0GSMHUB; 3.0GSPHUB, 3.0GSMLKD; 3.0GSPLKD, 3.0GSMNCA; 3.0GSMNCS; 3.0GSPNCA, 3.0GSMWTR; 3.0GSMWTS; 3.0GSPWTR, 3.0GSPBYCCE; 3.0GSP
1545283
1545283 Sealing ring
AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD41D; D41D; TAMD41D, AQD70D; TAMD70D; TAMD70E, D100BHC; D100BRC; TD100AHC, D42A; D42A PP, D70B; D70B PP; D70B K, D70CHC; D70CRC; TD70CHC, KAD42A; KAMD42A; HS1A, KAD42B; KAMD42B; TAMD42B, MD100A; TMD100A
958860
958860 Sealing ring
230A; 230B; 250A, 251A, 4.3GLMMDA; 4.3GLPMDA; 4.3GSPMDA, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.3GSPLKD, 4.3GLPNCA; 4.3GLPNCB; 4.3GLPNCS, 430; 430A; 430B, 5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FI
966207
966207 Sealing ring
230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ131A; AQ131B; AQ131C, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, AQ17
852868
852868 Sealing strip
230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ131A; AQ131B; AQ131C, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, AQ17
275751
275751 Sealing ring kit
AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, KAD32P; TAMD42WJ-A; KAD43P-A, KAD42A; KAMD42A; HS1A, KAD42B; KAMD42B; TAMD42B, KAD42P-A; KAMD42P-A; HS1A, MD31A; TMD31A; TMD31B, MD31A; TMD31B; TAMD31B, TD30A; TD31ACE; TD40A, T
853670
853670 Sealing ring
230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD31D; AD31D-A; AD31XD, AD41D; D41D; TAMD41D, AQ125B, AQ131A; AQ131B; AQ131C, AQ145B, AQ151A; AQ151B; AQ151C, AQ171A; AQ171C, AQ205A; AQ205LB, AQ211A; DP-A; SP-A, AQ225D; A
1676432
1676432 Sealing ring
AD31L-A; AD31P-A; AD41L-A, DH10A; DH10A 285; DH10A 360, KAD32P; TAMD42WJ-A; KAD43P-A, KAD42P-A; KAMD42P-A; HS1A, TAD1030G; TD1010G; TWD1010G, TAD1230G; TD1210G; TWD1210G, TAD1630P; TWD1630P; TWD1630PP, TAD1640GE; TAD1641GE; TAD1642GE, TAMD103A, TAMD1