22770973 Sensor Volvo.Penta
TAD1170VE; TAD1171VE; TAD1172VE, TAD1371VE; TAD1372VE; TAD1373VE, TAD1670VE; TAD1671VE; TAD1672VE, TAD570VE; TAD571VE; TAD572VE, TAD870VE; TAD871VE; TAD872VE, TWD1672GE; TWD1673GE; TWD1672-1673GE
Sensor
Price: query
Rating:
Compatible models:
Volvo Penta entire parts catalog list:
- SCR,Level Quality sensor,Heater » 22770973
TAD1670VE; TAD1671VE; TAD1672VE; TAD1670-72VE
TAD570VE; TAD571VE; TAD572VE
TAD870VE; TAD871VE; TAD872VE; TAD873VE
TWD1672GE; TWD1673GE; TWD1672-1673GE
Information:
System Block Diagram
Illustration 1 g03860871
(1) Clean Emissions Module (CEM)
(2) Dosing control cabinet
(3) Diesel Exhaust Fluid (DEF) customer supply tank
(4) Compressed air supply
(5) Separate circuit aftercooler (SCAC)
(6) Air cleaner
(7) Turbocharger compressor
(8) Turbocharger turbine
(9) Mixing tube
(10) Selective Catalyst Reduction (SCR)
(11) Exhaust outDiesel Exhaust Fluid (DEF)
Note: Two tools are available to measure the DEF concentration. The two tools are the 431-7087 Tool Gp (Refractometer (DEF)) and the 360-0774 Refractometer (Brix). Refer to Testing and Adjusting, "Diesel Exhaust Fluid Quality - Test" for additional information.Selective Catalyst Reduction (SCR) refers to a method of treating engine exhaust to reduce the undesired oxides of nitrogen compounds NOx. SCR uses a catalyst which promotes a desired chemical reactions over other possible chemical reactions. The catalyst remains unchanged. Ammonia (NH3) is mixed into the exhaust, and reacts with the NOx in the presence of the catalyst to form harmless compounds (water and nitrogen). In this system, urea ((NH2)2CO) is injected into the exhaust, which quickly decomposes into ammonia under the heated conditions. Urea is used because urea is inexpensive, and does not need the special handling that ammonia requires.DEF is an aqueous urea solution (urea salt dissolved in water).A 32.5 percent or 40 percent (by weight) solution of DEF is required for the system.A 32.5 percent concentration has the lowest freezing point possible, −11 °C (11 °F), for this solution.A 32.5 percent concentration of urea keeps a constant concentration through freezing and thawing.DEF must be stored below 50 °C (122 °F) to delay decomposition.Note: The customer is responsible for providing primary filtering of the DEF from the site tank to the buffer tank. The system requires a 40 micron primary filter.Use only DEF that meets quality properties per ISO 22241-1. Using DEF that does not meet ISO 22241-1 can result in clogging of the injection nozzle.Refer to Operation and Maintenance Manual, "Maintenance Section" to obtain locations for DEF suppliers.DEF is a non-toxic source of ammonia.DEF is corrosive. Do not store DEF in a tank or use supply lines that are made of the following materials: aluminum, brass and steel. Use only corrosion resistant materials such as PVC or stainless steel. Any O-rings must be Ethylene Propylene Diene Monomer (EPDM).Clean Emissions Module (CEM)
Z Style CEM
Illustration 2 g03776497
(1) Exhaust in
(2) Catalyst brick
(3) Service door
(4) Outlet mixer
(5) Exhaust out
(6) Flute
(7) Deflector plate
(8) Flapper mixer
(9) Swirl mixer
(10) Mixing tube
(11) Urea injectorU Style CEM
Illustration 3 g03776498
(1) Exhaust in
(2) Urea injector
(3) Mixing tube
(4) Swirl mixer
(5) Flapper mixer
(6) Service door
(7) Catalyst brick
(8) Outlet mixer
(9) Flute
(10) Exhaust outCEM Operation
The exhaust gas exits the engine and enters the mixing tube, where the DEF is injected into the exhaust stream.The DEF decomposes into ammonia and carbon dioxide.The mixture of exhaust and ammonia travels through the SCR.The ammonia reacts with the NOx in the exhaust stream at the SCR catalyst to produce water vapor and nitrogen.Dosing Control Cabinet
Illustration 4 g03773465
(1) SCR controller
(2) Wiring harness connector to main DEF tank
(3) Wiring harness connector to CEM
(4) DEF vent port
(5) AC power in
(6) Breaker
(7) Wiring harness
(8) DEF outlet to CEM
(9) Air outlet to CEM
(10) Air inlet
(11) DEF inlet
(12) Wiring harness connector to engine ECM
(13) Service tool connector
(14) DEF pump
(15) DEF tankThe dosing control cabinet controls the following:
Rate of DEF flow to the injector
Compressed airCompressed air is used for the following:
Assist in the atomizing of the liquid DEF during injection into the exhaust stream
Shield the liquid DEF in the injector from the exhaust heat until spraying, so that no crystallization occurs which could plug the injection nozzle.
Purge the DEF line to the injector during shutdown to prevent crystallization of DEF resulting in a plug.Compressed Air Supply to Dosing Cabinet
Air can be supplied by using shop air already available at the site or by installing a Cat-approved air compressor arrangement. In either case, the air provided to the dosing cabinet needs to be dry and clean. An oil-less air compressor is required.Oil can foul the catalyst and prevent the necessary chemical reactions from occurring. Sediment in the airline can plug the injection system.Note: An optional air compressor system is available from Caterpillar that is designed specifically for use with the aftertreatment system.
Table 1
Aftertreatment Air Supply Specification
Air Quality Class 5
Oil content – maximum 25 mg/m3
Particle size – maximum 40 micron
Particle density – maximum 10 mg/m3
Relative air humidity – maximum 10%
Air flow capacity – minimum 255 L/min (9 SCFM)
Air pressure – minimum 414 kPa (60 psi)
Air pressure – maximum 1069 kPa (155 psi) The SCR system will use up to 255 L/min (9 SCFM) at 414 kPa (60 psi). The system contains an air regulator with a maximum rating of 1069 kPa (155 psi) inlet pressure.To avoid clogging the air system with oil and/or sediment from piping, use a coalescing filter/separator that is 90 percent effective rated for 1069 kPa (155 psi) and 849.5 L/min (30 CFM).Air lines must be sized and routed so pressure loss across the line is no greater than 7 kPa (1 psi) with air delivery at 345 kPa (50 psi) and 141.5 L/min (5 CFM).Dosing Control System
The purpose
Illustration 1 g03860871
(1) Clean Emissions Module (CEM)
(2) Dosing control cabinet
(3) Diesel Exhaust Fluid (DEF) customer supply tank
(4) Compressed air supply
(5) Separate circuit aftercooler (SCAC)
(6) Air cleaner
(7) Turbocharger compressor
(8) Turbocharger turbine
(9) Mixing tube
(10) Selective Catalyst Reduction (SCR)
(11) Exhaust outDiesel Exhaust Fluid (DEF)
Note: Two tools are available to measure the DEF concentration. The two tools are the 431-7087 Tool Gp (Refractometer (DEF)) and the 360-0774 Refractometer (Brix). Refer to Testing and Adjusting, "Diesel Exhaust Fluid Quality - Test" for additional information.Selective Catalyst Reduction (SCR) refers to a method of treating engine exhaust to reduce the undesired oxides of nitrogen compounds NOx. SCR uses a catalyst which promotes a desired chemical reactions over other possible chemical reactions. The catalyst remains unchanged. Ammonia (NH3) is mixed into the exhaust, and reacts with the NOx in the presence of the catalyst to form harmless compounds (water and nitrogen). In this system, urea ((NH2)2CO) is injected into the exhaust, which quickly decomposes into ammonia under the heated conditions. Urea is used because urea is inexpensive, and does not need the special handling that ammonia requires.DEF is an aqueous urea solution (urea salt dissolved in water).A 32.5 percent or 40 percent (by weight) solution of DEF is required for the system.A 32.5 percent concentration has the lowest freezing point possible, −11 °C (11 °F), for this solution.A 32.5 percent concentration of urea keeps a constant concentration through freezing and thawing.DEF must be stored below 50 °C (122 °F) to delay decomposition.Note: The customer is responsible for providing primary filtering of the DEF from the site tank to the buffer tank. The system requires a 40 micron primary filter.Use only DEF that meets quality properties per ISO 22241-1. Using DEF that does not meet ISO 22241-1 can result in clogging of the injection nozzle.Refer to Operation and Maintenance Manual, "Maintenance Section" to obtain locations for DEF suppliers.DEF is a non-toxic source of ammonia.DEF is corrosive. Do not store DEF in a tank or use supply lines that are made of the following materials: aluminum, brass and steel. Use only corrosion resistant materials such as PVC or stainless steel. Any O-rings must be Ethylene Propylene Diene Monomer (EPDM).Clean Emissions Module (CEM)
Z Style CEM
Illustration 2 g03776497
(1) Exhaust in
(2) Catalyst brick
(3) Service door
(4) Outlet mixer
(5) Exhaust out
(6) Flute
(7) Deflector plate
(8) Flapper mixer
(9) Swirl mixer
(10) Mixing tube
(11) Urea injectorU Style CEM
Illustration 3 g03776498
(1) Exhaust in
(2) Urea injector
(3) Mixing tube
(4) Swirl mixer
(5) Flapper mixer
(6) Service door
(7) Catalyst brick
(8) Outlet mixer
(9) Flute
(10) Exhaust outCEM Operation
The exhaust gas exits the engine and enters the mixing tube, where the DEF is injected into the exhaust stream.The DEF decomposes into ammonia and carbon dioxide.The mixture of exhaust and ammonia travels through the SCR.The ammonia reacts with the NOx in the exhaust stream at the SCR catalyst to produce water vapor and nitrogen.Dosing Control Cabinet
Illustration 4 g03773465
(1) SCR controller
(2) Wiring harness connector to main DEF tank
(3) Wiring harness connector to CEM
(4) DEF vent port
(5) AC power in
(6) Breaker
(7) Wiring harness
(8) DEF outlet to CEM
(9) Air outlet to CEM
(10) Air inlet
(11) DEF inlet
(12) Wiring harness connector to engine ECM
(13) Service tool connector
(14) DEF pump
(15) DEF tankThe dosing control cabinet controls the following:
Rate of DEF flow to the injector
Compressed airCompressed air is used for the following:
Assist in the atomizing of the liquid DEF during injection into the exhaust stream
Shield the liquid DEF in the injector from the exhaust heat until spraying, so that no crystallization occurs which could plug the injection nozzle.
Purge the DEF line to the injector during shutdown to prevent crystallization of DEF resulting in a plug.Compressed Air Supply to Dosing Cabinet
Air can be supplied by using shop air already available at the site or by installing a Cat-approved air compressor arrangement. In either case, the air provided to the dosing cabinet needs to be dry and clean. An oil-less air compressor is required.Oil can foul the catalyst and prevent the necessary chemical reactions from occurring. Sediment in the airline can plug the injection system.Note: An optional air compressor system is available from Caterpillar that is designed specifically for use with the aftertreatment system.
Table 1
Aftertreatment Air Supply Specification
Air Quality Class 5
Oil content – maximum 25 mg/m3
Particle size – maximum 40 micron
Particle density – maximum 10 mg/m3
Relative air humidity – maximum 10%
Air flow capacity – minimum 255 L/min (9 SCFM)
Air pressure – minimum 414 kPa (60 psi)
Air pressure – maximum 1069 kPa (155 psi) The SCR system will use up to 255 L/min (9 SCFM) at 414 kPa (60 psi). The system contains an air regulator with a maximum rating of 1069 kPa (155 psi) inlet pressure.To avoid clogging the air system with oil and/or sediment from piping, use a coalescing filter/separator that is 90 percent effective rated for 1069 kPa (155 psi) and 849.5 L/min (30 CFM).Air lines must be sized and routed so pressure loss across the line is no greater than 7 kPa (1 psi) with air delivery at 345 kPa (50 psi) and 141.5 L/min (5 CFM).Dosing Control System
The purpose
Parts sensor Volvo Penta:
3885070
3885070 Sensor
1372, D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D12D-A MG; D12D-E MG, D12D-A MH; D12D-B MH; D12D-C MH, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13B-J MP; D13B-M MP, D13C1-A MP
21097978
21097978 Sensor, charge air pressure/temp
D11B1-A MP; D11B2-A MP, TAD1670VE; TAD1671VE; TAD1672VE, TAD540-42VE; TAD550-51VE; TAD540VE, TAD570VE; TAD571VE; TAD572VE, TAD840VE; TAD841VE; TAD842VE, TAD870VE; TAD871VE; TAD872VE
22422785
22422785 Sensor, oil pressure/temperature
D11B3-A MP; D11B4-A MP, D8A1-A MP; D8A2-A MP, TAD1140VE; TAD1141VE; TAD1142VE, TAD1150VE; TAD1151VE; TAD1152VE, TAD1170VE; TAD1171VE; TAD1172VE, TAD1371VE; TAD1372VE; TAD1373VE, TAD870VE; TAD871VE; TAD872VE
3843012
3843012 Sensor, charge air pressure/temp
D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A MP; D13C2-A MP; D13C3-A MP, TAD1640GE; TAD1641GE; TAD1642GE, TWD1672GE; TWD1673GE; TWD1672-1673GE
21399626
21399626 Sensor, expansion tank
1372, TAD1140VE; TAD1141VE; TAD1142VE, TAD1150VE; TAD1151VE; TAD1152VE, TAD1170VE; TAD1171VE; TAD1172VE, TAD1340VE; TAD1341VE; TAD1342VE, TAD1351VE; TAD1352VE; TAD1353VE, TAD1352VE, TAD1360VE, TAD1361VE, TAD1363VE, TAD1371VE; TAD1372VE; TAD1373VE, TA
22770972
22770972 Sensor
TAD1170VE; TAD1171VE; TAD1172VE, TAD1371VE; TAD1372VE; TAD1373VE, TAD1670VE; TAD1671VE; TAD1672VE, TAD570VE; TAD571VE; TAD572VE, TAD870VE; TAD871VE; TAD872VE, TWD1672GE; TWD1673GE; TWD1672-1673GE
22770974
22770974 Sensor
TAD1170VE; TAD1171VE; TAD1172VE, TAD1371VE; TAD1372VE; TAD1373VE, TAD1670VE; TAD1671VE; TAD1672VE, TAD570VE; TAD571VE; TAD572VE, TAD870VE; TAD871VE; TAD872VE, TWD1672GE; TWD1673GE; TWD1672-1673GE
47704180_069