951951 Spring pin Volvo.Penta
AQ175A, AQ200D; AQ200F; 280B, AQ205A; AQ205LB, AQ211A; DP-A; SP-A, AQ225D; AQ225E; AQ225F, AQ231A; AQ231B; AQ231LB, AQ260A; AQ260B; BB260A, AQ271A; AQ271B; AQ271C, AQ290A, AQ311A; AQ311B, BB231A; BB261A, MD5A; MD5B; MD5C
Spring
Price: query
Rating:
You can buy parts:
As an associate, we earn commssions on qualifying purchases through the links below
$106.70
17-12-2022
2.0965[0.94] Pounds
-: -
GYMSO Battery Replacement for Bruker 12N-1800SCR, 12N-2000SCR, 12N-3000SCR 3002 IH, 3002, 3002, 3002 IH
Battery Voltage: 14.4v || Dimensions:269.90 x 44.70 x 23.20mm Type :Nickel-Metal Hydride 951951 || Capacity:3000mAh || 【After-sales Service】12 month Warranty and 14-day Money Back Guarantee. Your satisfaction is important to us, please feel free to contact us with any question, 24*7 Email support. || Please buy with confidence. We guarantee 24-hour email support, please pay attention to check the original parts model you need
Battery Voltage: 14.4v || Dimensions:269.90 x 44.70 x 23.20mm Type :Nickel-Metal Hydride 951951 || Capacity:3000mAh || 【After-sales Service】12 month Warranty and 14-day Money Back Guarantee. Your satisfaction is important to us, please feel free to contact us with any question, 24*7 Email support. || Please buy with confidence. We guarantee 24-hour email support, please pay attention to check the original parts model you need
Compatible models:
Volvo Penta entire parts catalog list:
AQ200D; AQ200F; 280B; 290A; 290DP
AQ205A; AQ205LB
AQ211A; DP-A; SP-A; 290A
AQ225D; AQ225E; AQ225F; BB225A; BB225AV; BB225B; BB225C; 275; 280B; 290A; 290DP; MS3B; MS3C; MS4A
AQ231A; AQ231B; AQ231LB; 290A; DP-A; SP-A; 275A; 285A
AQ260A; AQ260B; BB260A; BB260AV; BB260B; BB260C
AQ271A; AQ271B; AQ271C; AQ271D; AQ271LB
AQ290A
AQ311A; AQ311B
BB231A; BB261A
MD5A; MD5B; MD5C
Information:
Table 1
J1939 Code and Description CDL Code and Description Comments
91-3
Accelerator Pedal Position #1 : Voltage Above Normal 91-3
Throttle Position Sensor : Voltage Above Normal The Electronic Control Module (ECM) detects signal voltage that is not in the acceptable range.
The code is logged. The ECM flags the throttle position as invalid data and a default value is used. The engine speed is limited to high idle.
91-4
Accelerator Pedal Position #1 : Voltage Below Normal 91-4
Throttle Position Sensor : Voltage Below Normal The ECM detects signal voltage that is not in the acceptable range.
The code is logged. The ECM flags the throttle position as invalid data and a default value is used. The engine speed is limited to high idle. Note: Performing steps within this procedure requires the use of a multimeter capable of measuring a PWM duty cycle and frequency. Refer to Table 2 for the tools recommended for the procedure.
Table 2
Recommended Tools
146-4080 Digital Multimeter Gp
7X-1710 Multimeter Probe
326-4904 Adapter Cable As The Electronic Control Module (ECM) can be configured to receive two different types of throttle signals for the engine throttle control:
CAN Input - A J1939 signal is received via the CAN data link.
PWM - The Pulse Width Modulated signal (PWM) must be received via terminal P1-66 at the ECM connector. If direct fuel control mode is used on the engine, the PWM signal must be received via terminal P1-66 at the ECM connector.The ECM also allows a primary throttle and a secondary throttle to be configured for the engine if direct fuel control mode is disabled. The type of signal that will be used for the primary throttle is configured by setting the "Desired Speed Input Configuration" parameter. The type of signal that will be used for the secondary throttle is configured by setting the "Secondary Desired Speed Input Configuration" parameter. Configuring both of these parameters to the same setting will invalidate the setting for the secondary throttle.The ECM will utilize the signal that is defined as the primary throttle as long as a valid signal is available from the expected source. If the signal from the primary throttle becomes unavailable, the ECM will use the signal that is defined as the secondary throttle. If both throttle signals become unavailable, the ECM uses the rated speed of the engine as the setpoint for the desired engine speed.For using an electronic external governor for engine control, the "Direct Fuel Control Mode" parameter must be enabled. The ECM input at P1-66 must be used for direct fuel control of the engine. Refer to Troubleshooting, "Direct Fuel Control Mode - Test" for additional information.
Illustration 1 g03889309
Table 3
Troubleshooting Test Steps Values Results
1. Inspect the Electrical Connectors and the Wiring
A. Turn the main disconnect switch to the OFF position.
B. Thoroughly inspect the connectors. Refer to Troubleshooting, "Electrical Connectors-Inspect" for additional information.
C. Perform a 45 N (10 lb) pull test on the connector wires.
D. Check the harness for abrasions and pinch points.
Connectors and Wiring
Result: The connectors and wiring appear to be OK.
Proceed to Test Step 2.
Result: There is a problem with the connectors and/or wiring.
Repair: Repair or replace the connectors or wiring. Ensure that all the seals are properly in place and ensure that the connectors are coupled.
If the problem is not resolved, proceed to Test Step 2.
2. Check for Codes
A. Connect Cat® Electronic Technician (ET) to the service tool connector.
B. Determine if a code is active or logged.
Codes
Result: A -4 code is active or logged.
Proceed to Test Step 3.
Result: A -3 code is active or logged.
Proceed to Test Step 7.
3. Check the Wiring for an Open Circuit
A. Turn the main disconnect switch to the OFF position.
B. Disconnect the J1 connector from the electronic Control Module (ECM).
C. Remove the signal wire at terminal 66 of the Engine Interface Connector (EIC).
D. Measure the resistance between the following terminals:
- P1-66 (ECM) and P1-66 (EIC)
Open Circuit
Result: There were less than 10 ohms of resistance.
Proceed to Test Step 4.
Result: There were more than 10 ohms of resistance.
Repair: An open circuit has been detected. Repair or replace wiring harness.
Verify that the repair eliminated the problem.
4. Check the Wiring Harness for a Short Circuit to Ground
A. Turn the main disconnect switch to the OFF position.
B. Disconnect the J1 connector from the ECM.
C. Measure the resistance between the following terminals:
- P1-66 (ECM) and known good ground.
Short Circuit
Result: There were less than 100 K ohms of resistance between P1-66 and a known good ground.
Proceed to Test Step 5.
Result: There were more than 100 K ohms of resistance on each wire and a known good ground.
Repair: A short circuit to ground has been detected. Repair or replace the wiring harness.
Verify that the repair eliminated the problem.
5. Check the Wiring Harness for a Pin to Pin Short Circuit
A. Turn the main disconnect switch to the OFF position.
B. Disconnect the J1 connector from the ECM.
C. Measure the resistance between the following terminals:
- Pin 66 on the J1 ECM connector and all the other pins in the J1 ECM connector.
Short Circuit
Result: There were less than 100 K ohms of resistance between the pin 66 and all the pins in the J1 ECM connector.
Repair: A short circuit to ground has been detected. Repair or replace the wiring harness.
Verify that the repair eliminated the problem.
Result: There were more than 100 K ohms of resistance between the pin 66 and all the pins in the J1 ECM connector.
Repair: The problem is located outside the Cat system wiring circuit. There is an open circuit or short to ground with the wiring or a problem with the speed control device after the EIC.
Proceed to Test Step 6.
6. Check the Device that Provides the Desired Engine Speed Signal
A. Measure the desired engine speed signal, refer to the Original Equipment Manufacturers (OEM) service information.
B. Verify that the correct signal is being provided from the device as close to the device as possible.
C. Verify that the correct signal is present at Terminal 66 of the EIC.
Desired Speed Signal
Result: The speed control device is not providing the correct desired speed input signal.
Repair: Repair or replace the device
Parts spring Volvo Penta:
941907
941907 Spring washer
120S-A; 120S-B; 120S-D, 130S-C; 130SR-C, 130S; 130S-B; 130SR-A, 150S-C; 150SR-C, 150S; 150S-B; 150SR, 2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 3.0GXiC-J; 3.0GXi-J, 430; 430A; 430B, 5.0GXiC-270-R; 5.0GiC-225-S, 5.0GXiC-J; 5.0GXiC-JF; 5.0GiC-J, 5.0
941904
941904 Spring washer
2001; 2001B; 2001AG, 230A; 230B; 250A, 251A, 430; 430A; 430B, 500; 500A; 501A, 571A, 740A; BB740A, AD30A; AQAD30A; MD30A, AD31D; AD31D-A; AD31XD, AD31L-A; AD31P-A; AD41L-A, AD41D; D41D; TAMD41D, AQ115A; AQ115B; AQ130, AQ120B; AQ125A; AQ140A, AQ125B,
942336
942336 Spring washer
230A; 230B; 250A, 251A, 4.3GLMMDA; 4.3GLPMDA; 4.3GSPMDA, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.3GSPLKD, 4.3GLPNCA; 4.3GLPNCB; 4.3GLPNCS, 430; 430A; 430B, 5.0GXi-A; 5.7Gi-A; 5.7GXi-A, 5.0GXi-B; 5.0GXi-BF; 5.0OSi-B, 5.7Gi-C; 5.7Gi-CF
941909
941909 Spring washer
4.3GL-A; 4.3GL-B; 4.3GL-C, 4.3GLMMDA; 4.3GLPMDA; 4.3GSPMDA, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.3GSPLKD, 4.3GLPNCA; 4.3GLPNCB; 4.3GLPNCS, 4.3GXi-B; 4.3GXi-BF; 4.3OSi-B, 4.3GXi-C; 4.3GXi-CF; 4.3GXi-D, 4.3GXi-E; 4.3GXi-EF; 4.3OSi-E
951953
951953 Spring pin
AQ115A; AQ115B; AQ130, MB10A, MD11; MD11C; MD11D, MD1B; MD2B; AQD2B, MD21B; AQD21B, MD5A; MD5B; MD5C, MD6; MD6A; MD6B, TAD1240GE; TAD1241GE; TAD1242GE, TAD940VE; TAD941VE; TAD942VE, TD71A; TID71A; TWD710V, TWD1240VE; TAD1241VE; TAD1242VE
951957
951957 Spring pin
D42A; D42A PP, IPS15-A, IPS15-B, IPS2-A, IPS2-B, IPS2-C, IPS20-D, IPS3-A, IPS3-C, IPS30-D, MD5A; MD5B; MD5C, MD6; MD6A; MD6B
835577
835577 Spring
430; 430A; 430B, 500; 500A; 501A, AQ175A, AQ200B; AQ225B, AQ200C; AQ200D; AQ225C, AQ200D; AQ200F; 280B, AQ205A; AQ205LB, AQ211A; DP-A; SP-A, AQ225D; AQ225E; AQ225F, AQ231A; AQ231B; AQ231LB, AQ260A; AQ260B; BB260A, AQ290A, BB231A; BB261A
856203