21912470 Starter element Volvo.Penta
D13B-F MG; D13B-E MG; D13B-E MG (FE), TAD1340VE; TAD1341VE; TAD1342VE, TAD1341GE; TAD1342GE; TAD1343GE, TAD1350VE, TAD1360VE, TAD1361VE, TAD1363VE, TAD940GE; TAD941GE, TAD940VE; TAD941VE; TAD942VE
Starter
Price: query
Rating:
Compatible models:
Volvo Penta entire parts catalog list:
- Starter Element » 21912470
TAD1341GE; TAD1342GE; TAD1343GE; TAD1344GE; TAD1345GE; TAD1350GE; TAD1351GE; TAD1352GE; TAD1353GE; TAD1354GE; TAD1355GE
TAD1350VE
TAD1360VE
TAD1361VE
TAD1363VE
TAD940GE; TAD941GE
TAD940VE; TAD941VE; TAD942VE; TAD943VE; TAD950VE; TAD951VE; TAD952VE
Information:
Illustration 1 g01456369
(1) Exhaust manifold
(2) Air inlet heater
(3) Aftercooler core
(4) Exhaust valve
(5) Inlet valve
(6) Air inlet
(7) Exhaust outlet
(8) Compressor side of turbocharger
(9) Turbine side of turbocharger The components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The components of the air inlet and exhaust system are the following components:
Air cleaner
Turbocharger
Aftercooler
Cylinder head
Valves and valve system components
Piston and cylinder
Exhaust manifold Inlet air is pulled through the air cleaner into air inlet (6) by turbocharger compressor wheel (8). The air is compressed and heated to about 150 °C (300 °F) before the air is forced to the aftercooler (3). As the air flows through the aftercooler the temperature of the compressed air lowers to about 43 °C (110 °F). Cooling of the inlet air increases combustion efficiency. Increased combustion efficiency helps achieve the following benefits:
Lower fuel consumption
Increased horsepower outputFrom the aftercooler, air is forced into the inlet manifold. Air flow from the inlet chambers into the cylinders is controlled by inlet valves (5). There are two inlet valves and two exhaust valves (4) for each cylinder. The inlet valves open when the piston moves down on the intake stroke. When the inlet valves open, cooled compressed air from the inlet port is pulled into the cylinder. The inlet valves close and the piston begins to move up on the compression stroke. The air in the cylinder is compressed. When the piston is near the top of the compression stroke, fuel is injected into the cylinder. The fuel mixes with the air and combustion starts. During the power stroke, the combustion force pushes the piston downward. The exhaust valves open and the exhaust gases are pushed through the exhaust port into exhaust manifold (1) as the piston rises on the exhaust stroke. After the exhaust stroke, the exhaust valves close and the cycle starts again. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustExhaust gases from exhaust manifold (1) enter the turbine side of the turbocharger in order to turn turbocharger turbine wheel (9). The turbine wheel is connected to the shaft that drives the compressor wheel. Exhaust gases from the turbocharger pass through exhaust outlet (7), a muffler and an exhaust stack.Turbocharger
Illustration 2 g01456229
Cross section of turbocharger
(10) Compressor wheel housing
(11) Oil inlet port
(12) Bearing
(13) Turbine wheel housing
(14) Turbine wheel
(15) Air inlet
(16) Exhaust outlet
(17) Compressor wheel
(18) Bearing
(19) Oil outlet port
(20) Exhaust inlet The turbocharger is installed on the center section of the exhaust manifold. All the exhaust gases from the engine go through the turbocharger. The compressor side of the turbocharger is connected to the aftercooler by pipe.The exhaust gases enter turbine housing (13) through exhaust inlet (20). The exhaust gases then push the blades of turbine wheel (14). The turbine wheel is connected by a shaft to compressor wheel (14).Clean air from the air cleaners is pulled through compressor housing air inlet (15) by the rotation of compressor wheel (17). The action of the compressor wheel blades causes a compression of the inlet air. This compressor allows the engine to burn more fuel. When the engine burns more fuel the engine produces more power.When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, more air is forced into the cylinders. The increased flow of air gives the engine more power by allowing the engine to burn the additional fuel with greater efficiency.
Illustration 3 g01456233
Turbocharger with wastegate
(21) Canister
(22) Actuating lever
(23) Line (boost pressure) The operation of the wastegate is controlled by the boost pressure. At high boost pressures, the wastegate opens in order to decrease boost pressure. At low boost pressure, the wastegate closes in order to increase boost pressure. When the engine is operating under conditions of low boost, a spring pushes on a diaphragm in canister (21). This action moves actuating lever (22) in order to close the valve of the wastegate. Closing the valve of the wastegate allows the turbocharger to operate at maximum performance.As the boost pressure through line (23) increases against the diaphragm in canister (21), the valve of the wastegate is opened. When the valve of the wastegate is opened, the rpm of the turbocharger is limited by bypassing a portion of the exhaust gases. The exhaust gases are routed through the wastegate which bypasses the turbine wheel of the turbocharger.Note: The turbocharger with a wastegate is preset at the factory and no adjustment can be made.Bearings (12) and (18) for the turbocharger use engine oil under pressure for lubrication and cooling. The oil comes in through oil inlet port (11). The oil then goes through passages in the center section in order to lubricate the bearings. This oil also cools the bearings. Oil from the turbocharger goes out through oil outlet port (19) in the bottom of the center section. The oil then goes back to the engine oil pan. Valve System Components
Illustration 4 g01456241
(24) Rocker arm
(25) Pushrod
(26) Valve bridge
(27) Valve spring
(28) Valve
(29) Lifter The valve system components control the flow of inlet air into the cylinders during engine operation. The valve system components also control the flow of exhaust gases out of the cylinders during engine operation.The crankshaft gear drives the camshaft gear through an idler gear. The camshaft must be timed to the crankshaft in order to get the correct relation between the piston movement and the valve movement.The camshaft has two camshaft lobes for each cylinder. The lobes operate the inlet and exhaust valves. As the camshaft turns, lobes on the camshaft cause lifters (29) to move pushrods (25) up and down. Upward movement of the pushrods against rocker arms (24) results in downward movement (opening) of valves (28).Each cylinder has two inlet valves and two exhaust valves. The valve bridge (26) actuates the valves at the same time by movement of the pushrod and rocker arm.
Parts starter Volvo Penta:
3803847
3803847 Starter motor, exch
D11A-A; D11A-B; D11A-C, D9A2A; D9A2A D9-425; D9A2A D9-500, D9A2A; D9A2A MG; D9A2A D9A-MG, TAD940GE; TAD941GE, TAD940VE; TAD941VE; TAD942VE
3801287
3801287 Starter motor, exch
D11A-A; D11A-B; D11A-C, D11B1-A MP; D11B2-A MP, D9A2A; D9A2A D9-425; D9A2A D9-500, D9A2A; D9A2A MG; D9A2A D9A-MG, TAD940GE; TAD941GE, TAD940VE; TAD941VE; TAD942VE
21103722
21103722 Starter motor
1372, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A MP; D13C2-A MP; D13C3-A MP, D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAD1351VE; TAD1352VE; TAD1353VE, TAD1352VE,
3801289
3801289 Starter motor, exch
1372, D13B-A MP; D13B-B MP; D13B-C MP, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D13C1-A MP; D13C2-A MP; D13C3-A MP, D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAD1340VE; TAD1341VE; TAD1342VE, TAD1341GE;
3829870
3829870 Starter motor
D12D-A MG; D12D-E MG, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAMD162A; TAMD162B; TAMD162C, TAMD162C-C; TAMD163A-A; TAMD163P-A, TAMD165A; TAMD165C; TAMD165P
3830007
3830007 Starter pinion
D12D-A MG; D12D-E MG, D13B-E MH; D13B-E MH (FE); D13B-N MH, D13B-F MG; D13B-E MG; D13B-E MG (FE), D16C-A MG, D16C-A MH; D16C-B MH; D16C-C MH, D16C-D MH, TAMD162A; TAMD162B; TAMD162C, TAMD162C-C; TAMD163A-A; TAMD163P-A, TAMD165A; TAMD165C; TAMD165P
22224078
22224078 Starter element
D13B-F MG; D13B-E MG; D13B-E MG (FE), TAD1340VE; TAD1341VE; TAD1342VE, TAD1341GE; TAD1342GE; TAD1343GE, TAD1350VE, TAD1360VE, TAD1361VE, TAD1363VE
22504359
22504359 Starter element
D13B-F MG; D13B-E MG; D13B-E MG (FE), TAD1340VE; TAD1341VE; TAD1342VE, TAD1341GE; TAD1342GE; TAD1343GE, TAD1350VE, TAD1351VE; TAD1352VE; TAD1353VE, TAD1371VE; TAD1372VE; TAD1373VE, TAD1643VE-B, TAD1650VE-B; TAD1650VE-B/51VE; TAD1651VE, TAD1670VE; TAD