3853682 Terminal, self test Volvo.Penta
5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE, 5.8FIPNCACE; 5.8FIPNCBCE; 5.8FIPNCMCE
Terminal
Price: query
Rating:
Compatible models:
Volvo Penta entire parts catalog list:
- Engine Harness » 3853682
5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE; 5.0FIPNCSCE; 5.0FLPNCA; 5.0FLPNCB; 5.0FLPNCM; 5.0FLPNCS
5.8FIPNCACE; 5.8FIPNCBCE; 5.8FIPNCMCE; 5.8FIPNCSCE; 5.8FLINCC; 5.8FLINCS; 5.8FLPNCA; 5.8FLPNCB; 5.8FLPNCM; 5.8FLPNCS; 5.8FSIINCC; 5.8FSIINC
Information:
Active Event Codes
An active event code represents a fault with engine operation. Correct the fault as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Event codes will cause a warning lamp to illuminate on the control panel and the event will be logged.Illustration 1 is an example of the operating range of an oil temperature sensor. Do not use the Illustration to troubleshoot the oil temperature sensor.
Illustration 1 g01365757
Example of the typical operating range of a sensor
(1) This area represents the normal operating range of the engine parameter.
(2) In these areas, the engine is operating in an unsafe operating range of the monitored parameter. An event code will be generated for the monitored parameter. The sensor circuit does not have an electronic fault.
(3) In these areas, the signal from the sensor is outside of the operating range of the sensor. The sensor circuit has an electronic fault. A diagnostic code will be generated for the sensor circuit. Refer to Troubleshooting, "Self Diagnostics" for additional information on diagnostic codes. The following format is used for event codes:"EXXX-Y Description of the event"The "E" means that the code is an event code. The "XXX" represents a numeric identifier for the event code. The "-Y" represents a numeric identifier for the severity of the event. This is followed by a description of the event. Refer to the following example:"E362-3 Engine Overspeed Shutdown"In this example, the number "-3" indicates the severity of the event. The ECM has three levels of response to events:Level -1 - This level can be referred to as the "Warning Level". This condition represents a serious problem with engine operation. However, this condition does not require a derate or a shutdown.Level -2 - This level can be referred to as the "Derate Level". For this condition, the ECM reduces the engine's power in order to help prevent possible engine damage.Level -3 - This level can be referred to as the "Shutdown Level". On this machine, a "Level 3" event code will be logged in the ECM but the engine will not shut down.Responses to certain events may be programmed into the ECM. Refer to Troubleshooting, "System Configuration Parameters".Logged Event Codes
When the ECM generates an event code, the ECM logs the code in permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent faults. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the fault which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint from the operator:
The event and the time of the event
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This is very important for faults that are intermittent. Refer to Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the fault, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.
An active event code represents a fault with engine operation. Correct the fault as soon as possible.Active event codes are listed in ascending numerical order. The code with the lowest number is listed first.Event codes will cause a warning lamp to illuminate on the control panel and the event will be logged.Illustration 1 is an example of the operating range of an oil temperature sensor. Do not use the Illustration to troubleshoot the oil temperature sensor.
Illustration 1 g01365757
Example of the typical operating range of a sensor
(1) This area represents the normal operating range of the engine parameter.
(2) In these areas, the engine is operating in an unsafe operating range of the monitored parameter. An event code will be generated for the monitored parameter. The sensor circuit does not have an electronic fault.
(3) In these areas, the signal from the sensor is outside of the operating range of the sensor. The sensor circuit has an electronic fault. A diagnostic code will be generated for the sensor circuit. Refer to Troubleshooting, "Self Diagnostics" for additional information on diagnostic codes. The following format is used for event codes:"EXXX-Y Description of the event"The "E" means that the code is an event code. The "XXX" represents a numeric identifier for the event code. The "-Y" represents a numeric identifier for the severity of the event. This is followed by a description of the event. Refer to the following example:"E362-3 Engine Overspeed Shutdown"In this example, the number "-3" indicates the severity of the event. The ECM has three levels of response to events:Level -1 - This level can be referred to as the "Warning Level". This condition represents a serious problem with engine operation. However, this condition does not require a derate or a shutdown.Level -2 - This level can be referred to as the "Derate Level". For this condition, the ECM reduces the engine's power in order to help prevent possible engine damage.Level -3 - This level can be referred to as the "Shutdown Level". On this machine, a "Level 3" event code will be logged in the ECM but the engine will not shut down.Responses to certain events may be programmed into the ECM. Refer to Troubleshooting, "System Configuration Parameters".Logged Event Codes
When the ECM generates an event code, the ECM logs the code in permanent memory. The ECM has an internal diagnostic clock. The ECM will record the following information when an event code is generated:
The hour of the first occurrence of the code
The hour of the last occurrence of the code
The number of occurrences of the codeLogged events are listed in chronological order. The most recent event code is listed first.This information can be helpful for troubleshooting intermittent faults. Logged codes can also be used to review the performance of the engine.Clearing Event Codes
A code is cleared from memory when one of the following conditions occur:
The code does not recur for 100 hours.
A new code is logged and there are already ten codes in memory. In this case, the oldest code is cleared.
The service technician manually clears the code.Always clear logged event codes after investigating and correcting the fault which generated the code.Troubleshooting
For basic troubleshooting of the engine, perform the following steps in order to diagnose a malfunction:
Obtain the following information about the complaint from the operator:
The event and the time of the event
Determine the conditions for the event. The conditions will include the engine rpm and the load.
Determine if there are any systems that were installed by the dealer or by the customer that could cause the event.
Determine whether any additional events occurred.
Verify that the complaint is not due to normal engine operation. Verify that the complaint is not due to error of the operator.
Narrow the probable cause. Consider the operator information, the conditions of operation, and the history of the engine.
Perform a visual inspection. Inspect the following items:
Fuel supply
Oil level
Oil supply
Wiring
ConnectorsBe sure to check the connectors. This is very important for faults that are intermittent. Refer to Troubleshooting, "Electrical Connectors - Inspect".If these steps do not resolve the fault, identify the procedures in this manual that best describe the event. Check each probable cause according to the tests that are recommended.
Parts terminal Volvo Penta:
3852036
3852036 Terminal, #10
3.0GLMMDA; 3.0GSPMDA, 3.0GSMBYMCE; 3.0GSPBYCCE, 3.0GSMHUB; 3.0GSPHUB, 3.0GSMLKD; 3.0GSPLKD, 3.0GSMNCA; 3.0GSMNCS; 3.0GSPNCA, 4.3GLMMDA; 4.3GLPMDA; 4.3GSPMDA, 4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.
3852038
3852038 Terminal, 0.25
3.0GLMMDA; 3.0GSPMDA, 3.0GSMBYMCE; 3.0GSPBYCCE, 3.0GSMHUB; 3.0GSPHUB, 3.0GSMLKD; 3.0GSPLKD, 3.0GSMNCA; 3.0GSMNCS; 3.0GSPNCA, 3.0GSMWTR; 3.0GSMWTS; 3.0GSPWTR, 3.0GSPBYCCE; 3.0GSPEFS; 3.0GSMEFS, 4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 4.3GLPEFS; 4.3GiPEFS,
3852244
3852244 Terminal, socket
3.0GLMMDA; 3.0GSPMDA, 3.0GSMBYMCE; 3.0GSPBYCCE, 3.0GSMHUB; 3.0GSPHUB, 3.0GSMLKD; 3.0GSPLKD, 3.0GSMNCA; 3.0GSMNCS; 3.0GSPNCA, 3.0GSMWTR; 3.0GSMWTS; 3.0GSPWTR, 4.3GLMMDA; 4.3GLPMDA; 4.3GSPMDA, 4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 4.3GLPHUB; 4.3GSPHUB; 4.
3852107
3852107 Terminal, bracket ground
4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.3GSPLKD, 4.3GLPNCA; 4.3GLPNCB; 4.3GLPNCS, 5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE, 5.0FL
3852257
3852257 Terminal
4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE, 5.0FLPMDA; 5.8FLPMDA, 5.0GLPBYC; 5.0GiPBYCCE; 5.7GSPBYC, 5.0GLPEFS; 5.0GiPEFS; 5.7GSPEFS, 5.7GLPLKA; 5.7
3853480
3853480 Terminal casing, knock sensor
4.3GLPBYC; 4.3GSPBYC; 4.3GIPBYCCE, 4.3GLPEFS; 4.3GiPEFS, 4.3GLPHUB; 4.3GSPHUB; 4.3GSPHUS, 4.3GLPLKD; 4.3GLPLKE; 4.3GSPLKD, 4.3GLPNCA; 4.3GLPNCB; 4.3GLPNCS, 4.3GLPWTC; 4.3GLPWTR; 4.3GSPWTC, 5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM;
3853695
3853695 Terminal, fuel injector
5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE, 5.8FIPNCACE; 5.8FIPNCBCE; 5.8FIPNCMCE
3853698
3853698 Terminal
5.0FIPHUBCE; 5.0FIPHUCCE; 5.0FIPHUECE, 5.0FiPMDA; 5.0FiPMDM; 5.8FiPMDA, 5.0FIPNCACE; 5.0FIPNCBCE; 5.0FIPNCMCE, 5.8FIPNCACE; 5.8FIPNCBCE; 5.8FIPNCMCE